

Overview of Numerical Approaches

Finite Element Formulations for High-Temperature Superconductors

C. Geuzaine, J. Dular and B. Vanderheyden

University of Liège, Institut Montefiore B28, 4000 Liège, Belgium

Third International School on Numerical Modelling for Applied Superconductivity Saas-Fee, Switzerland, 6-10 June 2022

1

• I am a professor at the University of Liège in Belgium, where I lead a team of about 15 people in the Montefiore Institute (Electrical Engineering and Computer Science Department), at the intersection of applied math, electromagnetism and scientific computing

- I am a professor at the University of Liège in Belgium, where I lead a team of about 15 people in the Montefiore Institute (Electrical Engineering and Computer Science Department), at the intersection of applied math, electromagnetism and scientific computing
- Our research interests include modelling, analysis, algorithm development, and simulation for problems arising in various areas of engineering and science
 - Current applications: electromagnetics, geophysics, biomedical problems

- I am a professor at the University of Liège in Belgium, where I lead a team of about 15 people in the Montefiore Institute (Electrical Engineering and Computer Science Department), at the intersection of applied math, electromagnetism and scientific computing
- Our research interests include modelling, analysis, algorithm development, and simulation for problems arising in various areas of engineering and science
 - Current applications: electromagnetics, geophysics, biomedical problems
- We write quite a lot of codes, several released as open source software: Gmsh, GetDP, ...

- I am a professor at the University of Liège in Belgium, where I lead a team of about 15 people in the Montefiore Institute (Electrical Engineering and Computer Science Department), at the intersection of applied math, electromagnetism and scientific computing
- Our research interests include modelling, analysis, algorithm development, and simulation for problems arising in various areas of engineering and science
 - Current applications: electromagnetics, geophysics, biomedical problems
- We write quite a lot of codes, several released as open source software: Gmsh, GetDP, ...
- Our toolkit for modelling superconductors: Life-HTS

Constant	

http://www.life-hts.uliege.be

Life-HTS

- Life-HTS: Liège University finite element models for High-Temperature Superconductors
- Numerical models for systems that contain both superconducting and ferromagnetic materials

http://www.life-hts.uliege.be

More specifically:

Life-HTS

- Life-HTS: Liège University finite element models for High-Temperature Superconductors
- Numerical models for systems that contain both superconducting and ferromagnetic materials
- Transient analysis for calculating field maps, magnetization, eddy currents, losses, ...
- Stable schemes for dealing with nonlinear constitutive laws
- Includes formulations (e.g. $h(\text{-}\phi)\text{-}a)$ for combining ferromagnetic and superconducting materials

University of Liège

Sart Tilman Campus

Montefiore Institute

The city of Liège

Life-HTS is based on ONELAB \triangle (Open Numerical Engineering LABoratory), an interface to

- the mesh generator Gmsh (https://gmsh.info)
- the finite element solver GetDP (https://getdp.info)

transformer

induction heating

rotating machine

Open-source, available for Windows, macOS, Linux, iOS, Android Download from https://onelab.info

Some numbers:

- Gmsh and GetDP started in 1996, ONELAB in 2010
- About 500k lines of C++ code
- Released under the GNU GPL v2+ (free and open source)

Some numbers:

- Gmsh and GetDP started in 1996, ONELAB in 2010
- About 500k lines of C++ code
- Released under the GNU GPL v2+ (free and open source)
- 3 main core developers; about 100 with ≥ 1 commit
- About 2,000 registered users on the development site https://gitlab.onelab.info

Some numbers:

- Gmsh and GetDP started in 1996, ONELAB in 2010
- About 500k lines of C++ code
- Released under the GNU GPL v2+ (free and open source)
- 3 main core developers; about 100 with ≥ 1 commit
- About 2,000 registered users on the development site https://gitlab.onelab.info
- About 20,000 downloads per month (70% Windows)
- About 1,000 citations per year on Google Scholar; Gmsh has become one of the most popular open source finite element mesh generators

Hands-on: a first example

2D and 3D model of twisted HTS wires Launch A, then open models/Superconductors/helix.pro

A Sketch of the Finite Element Method

A simple 1D boundary value problem

• Solve

$$-\frac{d}{dx}\left(a(x)\frac{du}{dx}\right) + b(x)u = f, \quad 0 \le x \le 1,$$

with

$$a(x) = 1 + x, \quad b(x) = \frac{1}{1+x}, \quad f(x) = \frac{2}{1+x},$$

and boundary conditions u(0) = 0 and u(1) = 1.

A simple 1D boundary value problem

• Solve

$$-\frac{d}{dx}\left(a(x)\frac{du}{dx}\right) + b(x)u = f, \quad 0 \le x \le 1,$$

with

$$a(x) = 1 + x, \quad b(x) = \frac{1}{1+x}, \quad f(x) = \frac{2}{1+x},$$

and boundary conditions u(0) = 0 and u(1) = 1.

• Solution

$$u(x) = \frac{2x}{1+x}$$

Finite Element Method: step 1

• Approximate u(x) in a finite dimensional space

$$u_m(x) = \phi_0(x) + \sum_{\ell=1}^m \gamma_\ell \phi_\ell(x),$$

with $\phi_0(x)=x$ such that $\phi_0(0)=0$ and $\phi_0(1)=1,$ whereas

$$\phi_{\ell}(0) = 0, \quad \phi_{\ell}(1) = 0, \quad \ell = 1, \dots, m.$$

The linearly independent functions $\phi_{\ell}(x)$, $\ell > 0$ span an approximation space, \mathcal{H}_m^0 , of dimension m.

Finite Element Method: step 2

• Define the residual

$$r(x) = -\frac{d}{dx}\left(a(x)\frac{du_m}{dx}\right) + b(x)u_m - f(x),$$

and require r(x) to be orthogonal to \mathcal{H}_m^0 , i.e.

$$(r,\phi_k)=0, \quad k=1,\ldots,m,$$

where $(u, v) = \int_{0}^{1} u(x)v(x)dx$.

Finite Element Method: step 2

• Define the residual

$$r(x) = -\frac{d}{dx}\left(a(x)\frac{du_m}{dx}\right) + b(x)u_m - f(x),$$

and require r(x) to be orthogonal to \mathcal{H}_m^0 , i.e.

$$(r,\phi_k)=0, \quad k=1,\ldots,m,$$

where $(u, v) = \int_0^1 u(x)v(x)dx$. This gives, for $k = 1, \dots, m$:

$$\sum_{\ell=0}^{m} \gamma_{\ell} \left(-\frac{d}{dx} \left(a(x) \frac{d\phi_{\ell}}{dx} \right), \phi_k \right) + (b(x) \phi_{\ell}, \phi_k) = (f(x), \phi_k),$$

with $\gamma_0 = 1$.

Finite Element Method: steps 3 and 4

- Integrate by part to relax the differentiability requirements on ϕ_k and seek for a weak solution,

$$\sum_{\ell=1}^{m} a_{k,\ell} \gamma_{\ell} = (f(x), \phi_k) - a_{k,0}, \quad k = 1, \dots, m,$$

where

$$a_{k,\ell} = \left(a(x) \frac{d\phi_{\ell}}{dx}, \frac{d\phi_k}{dx}\right) + (b(x) \phi_{\ell}, \phi_k).$$

Finite Element Method: steps 3 and 4

• Integrate by part to relax the differentiability requirements on ϕ_k and seek for a weak solution,

$$\sum_{\ell=1}^{m} a_{k,\ell} \gamma_{\ell} = (f(x), \phi_k) - a_{k,0}, \quad k = 1, \dots, m,$$

where

$$a_{k,\ell} = \left(a(x) \frac{d\phi_{\ell}}{dx}, \frac{d\phi_{k}}{dx}\right) + (b(x) \phi_{\ell}, \phi_{k}).$$

Choose functions φ_k with a restricted support. The resulting matrix elements a_{k,ℓ} vanish for most (k, ℓ) pairs.

A sparse system is obtained, which saves computational cost.

Numerical example

Function space: use piece-wise linear nodal functions (here, m = 3)

Approximate solution:

Numerical example

Convergence when the mesh is refined:

Finite Element Method: summary

• Need a function space for the approximations u_m ,

$$u_m(x) = \phi_0(x) + \sum_{\ell=1}^m \gamma_\ell \phi_\ell(x)$$
, with boundary conditions

• Impose $(r,\phi_k)=0$ in weak form for all ϕ_k , to get the linear system

$$Ax = b$$
,

with

$$\boldsymbol{A}_{k,\ell} = \left(a \frac{d\phi_{\ell}}{dx}, \frac{d\phi_{k}}{dx}\right) + (b\phi_{\ell}, \phi_{k}), \quad \boldsymbol{x}_{\ell} = \gamma_{\ell}, \text{ and } \boldsymbol{b}_{k} = (f, \phi_{k}).$$

Finite Element Method: summary

• Need a function space for the approximations u_m ,

$$u_m(x) = \phi_0(x) + \sum_{\ell=1}^m \gamma_\ell \phi_\ell(x)$$
, with boundary conditions

• Impose $(r,\phi_k)=0$ in weak form for all ϕ_k , to get the linear system

$$Ax = b$$

with

$$\boldsymbol{A}_{k,\ell} = \left(a\frac{d\phi_{\ell}}{dx}, \frac{d\phi_{k}}{dx}\right) + \left(b\phi_{\ell}, \phi_{k}\right), \quad \boldsymbol{x}_{\ell} = \gamma_{\ell}, \quad \text{and} \quad \boldsymbol{b}_{k} = (f, \phi_{k}).$$

In Life-HTS, a problem is described by specifying the function space and the weak form equations

Finite Element Method with Life-HTS

- In practice, a text script (.pro file) contains the GetDP problem definition structure
- A finite element mesh is required as input, built by Gmsh from a geometrical description (script or CAD file)

See https://onelab.info/slides/onelab.pdf for details

Learning curve

www.theexcitedwriter.com

Finite Element Formulations for High-Temperature Superconductors

With technical details related to the Life-HTS implementation

Simple finite element formulations

The a-v-formulation The h- ϕ -formulation

Resolution techniques Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

Introduction

Objective: Present and analyze various finite element formulations for modelling HTS and their implementation in Life-HTS. We will follow the GetDP philosophy:

- we will focus on building the weak form,
- and exploit the flexible function space possibilities, specifically for global variables.
- \Rightarrow We will cover some technical details.

Introduction

Objective: Present and analyze various finite element formulations for modelling HTS and their implementation in Life-HTS. We will follow the GetDP philosophy:

- we will focus on building the weak form,
- and exploit the flexible function space possibilities, specifically for global variables.
- \Rightarrow We will cover some technical details.

Important remark: One does not have to deal with these details for running existing templates.

Details are however fundamental for investigating new models and/or understanding the code.

General framework: magneto-quasistatics

• We aim to solve Maxwell's equations in the magneto-quasistatic ("magnetodynamic") approximation

curl
$$h = j$$
,curl $e = -\partial_t b$,div $b = 0$,

with

- *h* the magnetic field (A/m),
- j the current density (A/m²),
- e the electric field (V/m), and
- **b** the magnetic flux density (T),

while the displacement current $\partial_t d$ is neglected

General framework: magneto-quasistatics

• We aim to solve Maxwell's equations in the magneto-quasistatic ("magnetodynamic") approximation

with

- \boldsymbol{h} the magnetic field (A/m),
- j the current density (A/m²),
- e the electric field (V/m), and
- **b** the magnetic flux density (T),

while the displacement current $\partial_t d$ is neglected

- Boundary conditions and constitutive laws relating b to h and e to j are needed to obtain a well-posed problem

Constitutive laws

1. High-temperature superconductors (HTS):

$$oldsymbol{e} =
ho(\|oldsymbol{j}\|)oldsymbol{j}$$
 and $oldsymbol{b} = \mu_0oldsymbol{h},$

where the electrical resistivity is given as

$$\rho(\|\boldsymbol{j}\|) = \frac{e_c}{j_c} \left(\frac{\|\boldsymbol{j}\|}{j_c}\right)^{n-1},$$

with $e_c = 10^{-4} \text{ V/m}$, j_c , the critical current density, $n \in [10, 1000]$

[C.J.G. Plummer and J. E. Evetts, IEEE TAS **23** (1987) 1179] [E. Zeldov et al., Appl. Phys. Lett. **56** (1990) 680]

Constitutive laws

2. Ferromagnetic materials (FM):

$$oldsymbol{b}=\mu(oldsymbol{h})\,oldsymbol{h}$$
 and $oldsymbol{j}=oldsymbol{0}.$

Typical values (supra50):

- initial relative permeability $\mu_{ri}=1700$
- saturation magnetization $\mu_0 M = 1.3~{\rm T}$

Eddy currents are neglected

Constitutive laws

2. Ferromagnetic materials (FM):

$$oldsymbol{b}=\mu(oldsymbol{h})\,oldsymbol{h}$$
 and $oldsymbol{j}=oldsymbol{0}.$

Typical values (supra50):

- initial relative permeability $\mu_{ri}=1700$
- saturation magnetization $\mu_0 M = 1.3 \text{ T}$

Eddy currents are neglected

$$oldsymbol{b}=\mu_0\,oldsymbol{h}$$
 and $oldsymbol{j}=oldsymbol{0}.$

Constitutive laws, extensions

One can also consider

- normal conductors and coils,
- permanent magnets,
- ferromagnetic materials with hysteresis (e.g. [K. Jacques, thesis (2018)])
- type-I superconductors (need a London length)

Boundary conditions and global variables

Domain Ω decomposed into:

- $\Omega_{\rm c}$, the conducting domain $(\Omega_{\rm c}=\cup_{i=1}^N\Omega_{{
 m c}_i})$,
- $\Omega_{\rm c}^{\rm C}$, the complementary non-conducting domain.

Boundary conditions:

- 1. Local conditions. On domain boundary $\partial \Omega = \Gamma$:
 - $\boldsymbol{h} \times \boldsymbol{n} = \bar{\boldsymbol{h}} \times \boldsymbol{n}$, imposed on Γ_h ,
 - $\boldsymbol{e} \times \boldsymbol{n} = \bar{\boldsymbol{e}} \times \boldsymbol{n}$ (or $\boldsymbol{b} \cdot \boldsymbol{n} = \bar{\boldsymbol{b}} \cdot \boldsymbol{n}$), imposed on Γ_e (= $\Gamma \setminus \Gamma_h$).

Boundary conditions and global variables

Domain Ω decomposed into:

- $\Omega_{\rm c}$, the conducting domain $(\Omega_{\rm c}=\cup_{i=1}^N\Omega_{{
 m c}_i})$,
- $\Omega_{\rm c}^{\rm C}$, the complementary non-conducting domain.

Boundary conditions:

- 1. Local conditions. On domain boundary $\partial \Omega = \Gamma$:
 - $h \times n = \overline{h} \times n$, imposed on Γ_h ,
 - $e \times n = \bar{e} \times n$ (or $b \cdot n = \bar{b} \cdot n$), imposed on Γ_e (= $\Gamma \setminus \Gamma_h$).
- 2. Global conditions. Either the applied current I_i , or voltage V_i is imposed (or a relation between them, not covered here) on each separate conducting region Ω_{c_i} ,
 - $I_i = \bar{I}_i$, imposed for $i \in C_I$, a subset of $C = \{1, \dots, N\}$,
 - $V_i = \overline{V}_i$, imposed for $i \in C_V$, the complementary subset.

Summary

• Equations in Ω :

div
$$\boldsymbol{b} = 0$$
, curl $\boldsymbol{h} = \boldsymbol{j}$, curl $\boldsymbol{e} = -\partial_t \boldsymbol{b}$.

• Constitutive laws:

$$\boldsymbol{e} = \rho \, \boldsymbol{j}, \quad \boldsymbol{b} = \mu \boldsymbol{h}.$$

• Boundary conditions:

$$\begin{array}{|c|c|c|c|c|c|c|}\hline (\boldsymbol{h}-\bar{\boldsymbol{h}})\times \boldsymbol{n}|_{\Gamma_h}=\boldsymbol{0}, & (\boldsymbol{e}-\bar{\boldsymbol{e}})\times \boldsymbol{n}|_{\Gamma_e}=\boldsymbol{0}, \\ I_i=\bar{I}_i \text{ for } i\in C_I, & V_i=\bar{V}_i \text{ for } i\in C_V. \end{array}$$

Finite element formulations

Two classes of formulations:

- *h*-conform, e.g. h- ϕ -formulation,
 - enforces the continuity of the tangential component of *h*,
 - involves $\boldsymbol{e}=
 ho\,\boldsymbol{j}$ and $\boldsymbol{b}=\mu\boldsymbol{h}$,
 - much used for HTS modelling.

Finite element formulations

Two classes of formulations:

- *h*-conform, e.g. h- ϕ -formulation,
 - enforces the continuity of the tangential component of *h*,
 - involves $\boldsymbol{e}=
 ho\,\boldsymbol{j}$ and $\boldsymbol{b}=\mu\boldsymbol{h}$,
 - much used for HTS modelling.
- *b*-conform, e.g. *a*-*v*-formulation ,
 - enforces the continuity of the normal component of \boldsymbol{b} ,
 - involves $\boldsymbol{j}=\sigma \boldsymbol{e}$ and $\boldsymbol{h}=\nu \boldsymbol{b}$, $(\sigma=\rho^{-1},\,\nu=\mu^{-1})$
 - much used in electric rotating machine design.

Nonlinear constitutive laws involved in opposite ways \Rightarrow very different numerical behaviors are expected... and observed.

Differential forms

We discretize the fields as differential k-forms. The exterior derivative d applied on a k-form gives a k + 1-form:

- 0-form, H^1 , e.g. ϕ (scalar magnetic potential), v (scalar electric potential):
 - continuous scalar fields (conform),
 - generated by **nodal** functions ψ_n , value (point evaluation) at node $\tilde{n} = \delta_{n\tilde{n}}$,
 - $\bullet\,$ exterior derivative is ${\bf grad}$.

Differential forms

We discretize the fields as differential k-forms. The exterior derivative d applied on a k-form gives a k + 1-form:

- 0-form, H^1 , e.g. ϕ (scalar magnetic potential), v (scalar electric potential):
 - continuous scalar fields (conform),
 - generated by **nodal** functions ψ_n , value (point evaluation) at node $\tilde{n} = \delta_{n\tilde{n}}$,
 - exterior derivative is grad .
- 1-form, H(curl), e.g. h, e, a (magnetic vector potential), t (electric vector potential):
 - vector fields with continuous tangential trace (curl-conform),
 - generated by edge functions ψ_e , circulation (line integral) along edge $\tilde{e} = \delta_{e\tilde{e}}$,
 - exterior derivative is **curl** .

Differential forms

We discretize the fields as differential k-forms. The exterior derivative d applied on a k-form gives a k + 1-form:

- 0-form, H^1 , e.g. ϕ (scalar magnetic potential), v (scalar electric potential):
 - continuous scalar fields (conform),
 - generated by **nodal** functions ψ_n , value (point evaluation) at node $\tilde{n} = \delta_{n\tilde{n}}$,
 - exterior derivative is grad .
- 1-form, H(curl), e.g. h, e, a (magnetic vector potential), t (electric vector potential):
 - vector fields with continuous tangential trace (curl-conform),
 - generated by edge functions ψ_e , circulation (line integral) along edge $\tilde{e} = \delta_{e\tilde{e}}$,
 - $\bullet\,$ exterior derivative is ${\bf curl}$.
- 2-form, $H(\operatorname{div})$, e.g. \boldsymbol{b} , \boldsymbol{j} :
 - vector fields with continuous normal trace (div-conform),
 - generated by facet functions ψ_f , flux (surface integral) through facet $\tilde{f} = \delta_{f\tilde{f}}$,
 - exterior derivative is div .

Differential forms: illustration

Lowest order edge functions (1-form) for a triangular finite element:

Their **curl** (2-form) are constant.

Differential forms: Tonti diagram

• We can summarize it all on a Tonti diagram:

$$(\phi, \omega) \xrightarrow{\operatorname{grad}_{h}} h(t) \xrightarrow{\operatorname{curl}_{h}} j \xrightarrow{\operatorname{div}_{h}} 0$$

$$\downarrow b = \mu(h)h \qquad \downarrow e = \rho(j)j$$

$$0 \xleftarrow{\operatorname{div}_{e}} b \xleftarrow{\operatorname{curl}_{e}} e(a) \xleftarrow{\operatorname{grad}_{e}} (v)$$

Differential forms: Tonti diagram

• We can summarize it all on a Tonti diagram:

$$(\phi, \omega) \xrightarrow{\operatorname{grad}_{h}} h(t) \xrightarrow{\operatorname{curl}_{h}} j \xrightarrow{\operatorname{div}_{h}} 0$$

$$\downarrow b = \mu(h)h \qquad \downarrow e = \rho(j)j$$

$$0 \xleftarrow{\operatorname{div}_{e}} b \xleftarrow{\operatorname{curl}_{e}} e(a) \xleftarrow{\operatorname{grad}_{e}} (v)$$

- *h*-conform formulations (*h*, *h*- ϕ , *t*- ω , ...) satisfy the top exactly
- b-conform formulations (a, a-v, ...) satisfy the bottom exactly

Simple finite element formulations The a-v-formulation The b- ϕ -formulation

Resolution techniques Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

Derivation of the *a*-*v*-**formulation**

Introduce the vector potential \boldsymbol{a} , and the electric potential v:

 $\boldsymbol{b} = \operatorname{curl} \boldsymbol{a}, \qquad \boldsymbol{e} = -\partial_t \boldsymbol{a} - \operatorname{grad} v.$

Derivation of the *a*-*v*-**formulation**

Introduce the vector potential \boldsymbol{a} , and the electric potential v:

$$\boldsymbol{b} = \operatorname{curl} \boldsymbol{a}, \qquad \boldsymbol{e} = -\partial_t \boldsymbol{a} - \operatorname{grad} v.$$

Define a in Ω and v in Ω_c (discontinuous across electrodes):

- \boldsymbol{a} as a 1-form and v as a 0-form,
- satisfying the local BC $(m{e}-ar{m{e}}) imesm{n}|_{\Gamma_e}=m{0}$,
- and global BC V_i = V
 i for i ∈ C_V (i.e. the circulation of −grad v around conducting domain Ω_{ci} is equal to V
 i).

This strongly satisfies

div
$$\boldsymbol{b} = 0$$
, curl $\boldsymbol{e} = -\partial_t \boldsymbol{b}$, $(\boldsymbol{e} - \bar{\boldsymbol{e}}) \times \boldsymbol{n}|_{\Gamma_e} = \boldsymbol{0}$, $V_i = \bar{V}_i$ for $i \in C_V$.

Derivation of the *a*-*v*-**formulation**

Introduce the vector potential \boldsymbol{a} , and the electric potential v:

$$\boldsymbol{b} = \operatorname{curl} \boldsymbol{a}, \qquad \boldsymbol{e} = -\partial_t \boldsymbol{a} - \operatorname{grad} v.$$

Define a in Ω and v in Ω_c (discontinuous across electrodes):

- \boldsymbol{a} as a 1-form and v as a 0-form,
- satisfying the local BC $(m{e}-ar{m{e}}) imesm{n}|_{\Gamma_e}=m{0}$,
- and global BC V_i = V
 i for i ∈ C_V (i.e. the circulation of −grad v around conducting domain Ω_{ci} is equal to V
 i).

This strongly satisfies

div
$$\boldsymbol{b} = 0$$
, curl $\boldsymbol{e} = -\partial_t \boldsymbol{b}$, $(\boldsymbol{e} - \bar{\boldsymbol{e}}) \times \boldsymbol{n}|_{\Gamma_{\boldsymbol{e}}} = \boldsymbol{0}$, $V_i = \bar{V}_i$ for $i \in C_V$.

What remains is:

$$\operatorname{curl} \boldsymbol{h} = \boldsymbol{j}, \quad \boldsymbol{j} = \sigma \boldsymbol{e}, \quad \boldsymbol{h} = \nu \boldsymbol{b}, \quad (\boldsymbol{h} - \bar{\boldsymbol{h}}) \times \boldsymbol{n}|_{\Gamma_h} = \boldsymbol{0}, \quad I_i = \bar{I}_i \text{ for } i \in C_I.$$

Choosing \boldsymbol{a} and \boldsymbol{v}

We still have freedom on the choice of ${\pmb a}$ and v. Indeed, for any scalar field $\phi,$ the substitution

$$a \rightarrow a + \int_0^t \operatorname{grad} \phi \, dt$$

 $v \rightarrow v - \phi$

lets the physical solution, b and e, unchanged.

We present here one possibility for gauging \boldsymbol{a} and v in:

(1) 2D case with in-plane b, (2) 3D case.

Choosing \boldsymbol{a} and \boldsymbol{v}

We still have freedom on the choice of ${\pmb a}$ and v. Indeed, for any scalar field $\phi,$ the substitution

$$oldsymbol{a}
ightarrow oldsymbol{a}
ightarrow oldsymbol{a} + \int_0^t \mathbf{grad} \ \phi \ dt$$

 $v
ightarrow v - \phi$

lets the physical solution, b and e, unchanged.

We present here one possibility for gauging a and v in:

(1) 2D case with in-plane b, (2) 3D case.

In both cases, **one** global shape function $v_{d,i}$ in each Ω_{c_i} is sufficient for representing a unit voltage in Ω_{c_i} , s.t. we have:

$$extbf{grad} \; v = \sum_{i=1}^N V_i \operatorname{\mathsf{grad}} \; v_{d,i}.$$

Choosing \boldsymbol{a} and v, cont'd

$$oldsymbol{b} = \operatorname{curl} oldsymbol{a}, \qquad oldsymbol{e} = -\partial_t oldsymbol{a} - \operatorname{grad} v, \qquad \operatorname{grad} v = \sum_{i=1}^N V_i \operatorname{grad} v_{d,i}$$

- 1. 2D with in-plane **b**:
- We choose a along \hat{z} ,

$$\boldsymbol{a} = \sum_{n \in \Omega} a_n \ \psi_n \hat{\boldsymbol{z}},$$

with ψ_n the nodal function of node n. NB: It is a Coulomb gauge, as div a = 0

- grad $v_{d,i}$ is along \hat{z} and constant (= 1) in each Ω_{c_i} . (V is a voltage per unit length.)
- Remaining constant fixed by BC.

Life-HTS a in 2D, with in-plane b

$$oldsymbol{a} = \sum_{n \in \Omega} a_n \ \psi_n \hat{oldsymbol{z}},$$

Life-HTS grad v in 2D, with in-plane b

grad
$$v = \sum_{i=1}^N V_i$$
 grad $v_{d,i} = \sum_{i=1}^N V_i \, \hat{oldsymbol{z}}_i$

```
FunctionSpace {
 { Name grad_v_space_2D; Type Form1P;
   BasisFunction {
     // Constant per region and along z. Corresponds to a voltage per unit length
     { Name zi; NameOfCoef Vi; Function BF_RegionZ;
       Support Region[OmegaC]: Entity Region[OmegaC]: }
   }
   GlobalQuantity {
     // Associated global quantities to be used in the formulation
     { Name V; Type AliasOf; NameOfCoef Vi; }
     { Name I; Type AssociatedWith; NameOfCoef Vi; }
   3
   Constraint {
     { NameOfCoef V; EntityType Region; NameOfConstraint Voltage; }
     { NameOfCoef I; EntityType Region; NameOfConstraint Current; }
   }
 }
}
```


Choosing \boldsymbol{a} and \boldsymbol{v}

2. 3D:

• In Ω_c , define $v_{d,i}$ to be zero everywhere except on a transition layer in Ω_{c_i} : layer of one element, on one side of the electrodes, in each Ω_{c_i} (v has no longer a physical interpretation),

grad
$$v = \sum_{i=1}^{N} V_i$$
 grad $v_{d,i}$.

- a is generated by edge functions.
- In Ω_c , a is unique, e.g. outside the transition layer $e = -\partial_t a$ (reduced vector potential).
- In $\Omega_{\rm c}^{\rm C}$, \boldsymbol{a} is made unique with a co-tree gauge...

Co-tree gauge for \boldsymbol{a} in Ω_{c}^{C} in 3D

- In Ω_c^C , only **curl** a = b has a physical meaning. One degree of freedom (DoF) per facet is sufficient (and necessary), instead of one DoF per edge.
- The support entities of the 1-form \boldsymbol{a} are the edges.
- To associate a unique edge to each facet: consider only edges in a **co-tree**, i.e. the complementary of a **tree**:

NB: Be careful on the conducting domain boundary $\partial \Omega_c$, no gauge there because a is already unique.

Life-HTS a in 3D

 $\sum a_e \psi_e$ a = $e \in \Omega_c \cup (\text{co-tree in } \Omega_c^C)$

```
FunctionSpace {
 { Name a space 3D: Type Form1:
    BasisFunction {
     // Usual edge functions everywhere (decomposed to handle BndOmegaC) correctly
      { Name psie ; NameOfCoef ae ; Function BF Edge ;
        Support Omega a AndBnd ; Entity EdgesOf[ All, Not BndOmegaC ] ; }
      { Name psie2 ; NameOfCoef ae2 ; Function BF Edge ;
        Support Omega a AndBnd ; Entity EdgesOf[ BndOmegaC ] ; }
    }
    Constraint {
      { NameOfCoef ae; EntityType EdgesOf; NameOfConstraint a; }
      { NameOfCoef ae2; EntityType EdgesOf; NameOfConstraint a; }
      { NameOfCoef ae; EntityType EdgesOfTreeIn; EntitySubType StartingOn;
        NameOfConstraint GaugeCondition; }
    }
 }
}
Constraint {
 { Name GaugeCondition ; Type Assign ;
    Case f
     // Zero on edges of a tree in Omega CC, containing a complete tree on Surf a noGauge
      {Region Omega_a_OmegaCC ; SubRegion Surf_a_noGauge; Value 0.; }
   }
 }
}
```


Life-HTS \boldsymbol{v} in 3D

```
grad v = \sum_{i=1}^{N} V_i grad v_{d,i}
FunctionSpace {
 { Name grad_v_space_3D; Type Form1;
   BasisFunction {
      // Global unit voltage shape function. Support limited to only one side of the electrodes
      { Name vi; NameOfCoef Vi; Function BF_GradGroupOfNodes;
        Support ElementsOf[OmegaC, OnPositiveSideOf Electrodes];
        Entity GroupsOfNodesOf[Electrodes]: }
    3
   GlobalQuantity {
      // Associated global quantities to be used in the formulation.
      { Name V; Type AliasOf; NameOfCoef Vi; }
      { Name I; Type AssociatedWith; NameOfCoef Vi; }
    3
   Constraint {
      { NameOfCoef V;
        EntityType GroupsOfNodesOf; NameOfConstraint Voltage; }
      { NameOfCoef I:
        EntityType GroupsOfNodesOf; NameOfConstraint Current; }
   }
 }
}
```


Choosing a and v, other possibilities

Various alternatives can also be considered in 3D:

- Distributed support for v, via a preliminary FE resolution [S. Schöps, et al., COMPEL (2013)]
- Coulomb gauge in Ω_c^C via a Lagrange multiplier [Creusé, et al., Computers & Mathematics with Applications, 77(6), 1563-1582 (2019)]

What remains is:

$$\underbrace{\underset{\Rightarrow \text{ curl } (\nu \text{ curl } a) = -\sigma (\partial_t a + \text{grad } v) (\star)}{\bigotimes}}_{(h - \overline{h}) \times n|_{\Gamma_h} = 0}, \quad \underbrace{I_i = \overline{I_i} \text{ for } i \in C_I}_{(\mu \text{ curl } a) = -\sigma (\partial_t a + \text{grad } v) (\star)}$$

What remains is:

$$\underbrace{\underset{\Rightarrow \text{ curl } (\nu \text{ curl } a) = -\sigma (\partial_t a + \text{grad } v) (\star)}{\bigotimes}}_{(h - \bar{h}) \times n|_{\Gamma_h} = 0}, \quad \underbrace{I_i = \bar{I}_i \text{ for } i \in C_I}_{(\bar{\mu} + \text{grad } v) (\star)}$$

• Multiply \circledast by a test function a', in the same space than a but with homogeneous BC, and integrate over Ω ,

$$\begin{aligned} (\operatorname{curl} \ (\nu \operatorname{curl} \ \boldsymbol{a}) \ , \boldsymbol{a}')_{\Omega} + (\sigma \ (\partial_t \boldsymbol{a} + \operatorname{grad} \ v) \ , \boldsymbol{a}')_{\Omega_c} &= 0 \\ \Rightarrow \quad (\nu \operatorname{curl} \ \boldsymbol{a} \ , \operatorname{curl} \ \boldsymbol{a}')_{\Omega} - (\underbrace{\nu \operatorname{curl} \ \boldsymbol{a} \times \boldsymbol{n}}_{\operatorname{Neumann} \operatorname{BC} \odot} \ , \ \boldsymbol{a}')_{\Gamma_h} \\ &+ (\sigma \ \partial_t \boldsymbol{a} \ , \boldsymbol{a}')_{\Omega_c} + (\sigma \operatorname{grad} \ v \ , \boldsymbol{a}')_{\Omega_c} = 0 \end{aligned}$$

What remains is:

$$\underbrace{\underset{\Rightarrow \text{ curl } (\nu \text{ curl } a) = -\sigma (\partial_t a + \text{grad } v) (\star)}{\bigotimes}}_{(h - \overline{h}) \times n|_{\Gamma_h} = 0}, \quad \underbrace{I_i = \overline{I_i} \text{ for } i \in C_I}_{(\overline{\mu} \text{ curl } a) = -\sigma (\partial_t a + \text{grad } v) (\star)}$$

- Multiply \circledast by a test function ${\rm grad}~v',$ and integrate over $\Omega_{\rm c},$

$$\begin{split} (\operatorname{curl} \ (\nu \operatorname{curl} \ a) \ , \operatorname{grad} \ v')_{\Omega_{\mathrm{c}}} &+ (\sigma \ \partial_t a \ , \operatorname{grad} \ v')_{\Omega_{\mathrm{c}}} \\ &+ (\sigma \ \operatorname{grad} \ v \ , \operatorname{grad} \ v')_{\Omega_{\mathrm{c}}} = 0 \\ \Rightarrow &- \underbrace{(\nu \ \operatorname{curl} \ a \times n \ , \operatorname{grad} \ v')_{\partial\Omega_{\mathrm{c}}}}_{\bigoplus \dots} + (\sigma \ \partial_t a \ , \operatorname{grad} \ v')_{\Omega_{\mathrm{c}}} \\ &+ (\sigma \ \operatorname{grad} \ v \ , \operatorname{grad} \ v')_{\Omega_{\mathrm{c}}} = 0 \end{split}$$

LIÈGE Université Derivation of the <u>a-v-formulation</u>, cont'd

• The surface term simplifies

$$\begin{split} (\nu \operatorname{\mathsf{curl}} \mathbf{a} \times \mathbf{n} \ , \operatorname{\mathsf{grad}} v')_{\partial\Omega_c} &= (\mathbf{h} \times \mathbf{n} \ , \operatorname{\mathsf{grad}} v')_{\partial\Omega_c} \\ &= (\mathbf{h} \ , \mathbf{n} \times \operatorname{\mathsf{grad}} v')_{\partial\Omega_c} \\ &= (\mathbf{h} \ , \mathbf{n} \times \operatorname{\mathsf{grad}} v')_{\partial(\operatorname{\mathsf{transition layer}})} \\ &= I \ V' = \overline{I} \ V' \qquad (\operatorname{\mathsf{Ampère's law}} + \textcircled{\basis}). \end{split}$$

*a-v-*formulation

Finally, the <u>a-v-formulation</u> amounts to find a and v in the chosen function spaces such that, $\forall a'$ and v',

$$\begin{split} (\nu \operatorname{curl} \boldsymbol{a} \ , \operatorname{curl} \boldsymbol{a}')_{\Omega} &- \left(\bar{\boldsymbol{h}} \times \boldsymbol{n}_{\Omega} \ , \boldsymbol{a}' \right)_{\Gamma_{h}} \\ &+ (\sigma \ \partial_{t} \boldsymbol{a} \ , \boldsymbol{a}')_{\Omega_{c}} + (\sigma \operatorname{grad} v \ , \boldsymbol{a}')_{\Omega_{c}} = 0, \\ (\sigma \ \partial_{t} \boldsymbol{a} \ , \operatorname{grad} v')_{\Omega_{c}} &+ (\sigma \operatorname{grad} v \ , \operatorname{grad} v')_{\Omega_{c}} = \sum_{i=1}^{N} I_{i} \mathcal{V}_{i}(v'), \end{split}$$

with $I_i = \overline{I}_i$ for $i \in C_I$, and $\mathcal{V}_i(v') = V'_i$ (i.e. the DoF associated with the unit voltage function $v_{d,i}$).

 \Rightarrow

a-v-formulation – Interpretation

When the test function $v' = v_{d,i}$ is chosen ($\mathcal{V}_i(v_{d,i}) = 1$), the second equation reads

$$egin{array}{lll} \left(\sigma\left(\partial_t oldsymbol{a} + oldsymbol{grad} \; v
ight) \;, oldsymbol{grad} \; v_{d,i}
ight)_{\Omega_{
m c}} = I_i \ \left(\sigma oldsymbol{e} \;, -oldsymbol{grad} \; v_{d,i}
ight)_{\Omega_{
m c}} = I_i. \end{array}$$

"Flux of $\sigma e \; (= j)$ averaged over a transition layer = total current".

NB: The flux of σe depends on the chosen cross-section as σe is not a 2-form (as j should be). Conservation of current is weakly satisfied.

Simple finite element formulations The a-v-formulation The h- ϕ -formulation

Resolution techniques Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

Derivation of the h- ϕ -formulation

Choose h such that

- it is a 1-form,
- $(\boldsymbol{h}-\bar{\boldsymbol{h}}) imes \boldsymbol{n}|_{\Gamma_h}=\boldsymbol{0}$,
- curl h = 0 in Ω_c^C (this is the key point),
- and express ${\pmb j}$ directly as ${\pmb j} = {\bf curl}\; {\pmb h}$ in $\Omega_{\rm c},$ with ${\pmb h}$ generated by edge functions.

Derivation of the h- ϕ -formulation

Choose h such that

- it is a 1-form,
- $(\boldsymbol{h}-\bar{\boldsymbol{h}}) imes \boldsymbol{n}|_{\Gamma_h}=\boldsymbol{0},$
- curl h = 0 in Ω_c^C (this is the key point),
- and express ${\pmb j}$ directly as ${\pmb j} = {\bf curl}\; {\pmb h}$ in $\Omega_{\rm c},$ with ${\pmb h}$ generated by edge functions.

What are the functions h that satisfy curl h = 0 in Ω_c^C ?

- \Rightarrow Surely gradients of scalar functions!
 - If $h = \text{grad } \phi$, then curl h = 0, $\forall \phi$.
 - However, choosing only $h = \operatorname{grad} \phi$ does not allow to represent a net current intensity (necessary if Ω_c^C is multiply connected).
 - We need additional functions. . .

[•] Derivation of the $h-\phi$ -formulation, cont'd

- One global shape function c_i for each Ω_{c_i} is enough for representing a unit current intensity in Ω_{c_i} .
- As with the <u>a-v-formulation</u>, we have freedom on the choice of these functions. The only constraint is that
 - $\oint_{\mathcal{C}_i} \boldsymbol{c}_j \cdot d\boldsymbol{\ell} = \delta_{ij}.$

In Ω_c^C , we therefore have

$$\boldsymbol{h} = \operatorname{grad} \phi + \sum_{i=1}^{N} I_i \, \boldsymbol{c}_i.$$

Choice of the global functions

One possibility for choosing the c_i functions, the cut functions:

- Introduce cuts to make $\Omega_{\rm c}^{\rm C}$ simply connected.
- Define the c_i on transition layers: layer of one element on one side of the cut, for each cut.
- $c_i = \operatorname{grad} \phi_{d,i}$, with $\phi_{d,i}$ a discontinuous scalar potential.

Choice of the global functions

One possibility for choosing the c_i functions, the cut functions:

- Introduce cuts to make $\Omega_{\rm c}^{\rm C}$ simply connected.
- Define the c_i on transition layers: layer of one element on one side of the cut, for each cut.
- $c_i = \operatorname{grad} \phi_{d,i}$, with $\phi_{d,i}$ a discontinuous scalar potential.

NB: Gmsh has an automatic cohomology solver for generating cuts in complicated geometries (e.g. helix windings) [M. Pellikka, et al. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214 (2013)]

Summary and shape function supports

In Ω we have

$$\boldsymbol{h} = \sum_{n \in \Omega_{c}^{C}} \phi_{n} \text{ grad } \psi_{n} + \sum_{e \in \Omega_{c} \setminus \partial \Omega_{c}} h_{e} \ \boldsymbol{\psi}_{e} + \sum_{i=1}^{N} I_{i} \ \boldsymbol{c}_{i}.$$

Gradient of node functions.

Classical edge functions.

Global cut function. Net current $\neq 0$.

Note: Gray areas = Ω_c .

Life-HTS h in 2D or 3D

$$m{h} = \sum_{n \in \Omega_{\mathrm{c}}^{\mathrm{C}}} \phi_n \; \mathbf{grad} \; \psi_n + \sum_{e \in \Omega_{\mathrm{c}} \setminus \partial \Omega_{\mathrm{c}}} h_e \; m{\psi}_e + \sum_{i=1}^N I_i \; m{c}_i.$$

```
FunctionSpace{
```

```
{ Name h space; Type Form1;
    BasisFunction {
      // Nodal functions
      { Name gradpsin; NameOfCoef phin; Function BF_GradNode;
        Support Omega_h_OmegaCC_AndBnd; Entity NodesOf[OmegaCC]; }
      { Name gradpsin; NameOfCoef phin2; Function BF GroupOfEdges;
        Support Omega_h_OmegaC; Entity GroupsOfEdgesOnNodesOf[BndOmegaC]; }
      // Edge functions
      { Name psie; NameOfCoef he; Function BF Edge;
        Support Omega_h_OmegaC_AndBnd; Entity EdgesOf[All, Not BndOmegaC]; }
      // Cut functions
      { Name ci: NameOfCoef Ii: Function BF GradGroupOfNodes:
        Support ElementsOf[Omega h OmegaCC, OnPositiveSideOf Cuts];
        Entity GroupsOfNodesOf[Cuts]; }
      { Name ci; NameOfCoef Ii2; Function BF_GroupOfEdges;
        Support Omega h OmegaC AndBnd;
        Entity GroupsOfEdgesOf[Cuts. InSupport TransitionLaverAndBndOmegaC]: }
    }
    GlobalQuantity {
      { Name I : Type AliasOf
                                    : NameOfCoef Ii : }
      { Name V ; Type AssociatedWith ; NameOfCoef Ii ; }
    3
    Constraint {
      { [...] }
      { [...] }
1 1 1
```


Other possibilities can also be considered:

• Winding functions

[S. Schöps, et al. COMPEL (2013)]

• Large resistivity ($\approx 1 \ \Omega m$) in Ω_c^C and integral constraint on the current (simple but much more DoF), leading to a full *h*-formulation [Shen, B., et al., IEEE access, 8 (2020) 100403-100414]

Université Derivation of the $h-\phi$ -formulation, cont'd

With the chosen h, we strongly satisfy

curl
$$\boldsymbol{h} = \boldsymbol{j}, \quad (\boldsymbol{h} - \bar{\boldsymbol{h}}) \times \boldsymbol{n}|_{\Gamma_h} = \boldsymbol{0}, \quad I_i = \bar{I}_i \text{ for } i \in C_I.$$

Liège Université Derivation of the $h-\phi$ -formulation, cont'd

With the chosen h, we strongly satisfy

curl
$$h = j$$
, $(h - \bar{h}) \times n|_{\Gamma_h} = 0$, $I_i = \bar{I}_i$ for $i \in C_I$.

What remains is:

div
$$\boldsymbol{b} = 0$$
, curl $\boldsymbol{e} = -\partial_t \boldsymbol{b}$, $\boldsymbol{e} = \rho \boldsymbol{j}$, $\boldsymbol{b} = \mu \boldsymbol{h}$,
 $(\boldsymbol{e} - \bar{\boldsymbol{e}}) \times \boldsymbol{n}|_{\Gamma_{\boldsymbol{e}}} = \boldsymbol{0}$, $V_i = \bar{V}_i$ for $i \in C_V$.

We model an external applied voltage V by a localized e_{a} field in a modified Ohm's law:

 $\boldsymbol{e} = \boldsymbol{e}_{\mathrm{a}} + \rho \, \boldsymbol{j},$

with $e_a = V\delta(\boldsymbol{\xi} - \boldsymbol{\xi}_{\Sigma})\boldsymbol{n}$ so that we globally have a net E.M.F. ($\delta(\cdot)$ is the Dirac distribution)

What remains is:

$$\begin{array}{c} \Rightarrow \operatorname{curl} (\rho \operatorname{curl} h) + \operatorname{curl} e_{\mathbf{a}} = -\partial_t (\mu h) \textcircled{\textcircled{\baselineskiplimits}} \\ & \underbrace{\operatorname{curl} e = 0, \quad \overbrace{\operatorname{curl} e = -\partial_t b, \quad e = e_{\mathbf{a}} + \rho \, \mathbf{j}, \quad b = \mu h}_{\bigotimes}, \\ & \underbrace{(e - \bar{e}) \times \mathbf{n}|_{\Gamma_e} = \mathbf{0}}_{\bigotimes}, \quad \underbrace{V_i = \bar{V}_i \text{ for } i \in C_V}_{\bigoplus}. \end{array}$$

Université Derivation of the $h-\phi$ -formulation, cont'd

What remains is:

$$\begin{array}{c} \Rightarrow \operatorname{curl} (\rho \operatorname{curl} h) + \operatorname{curl} e_{\mathbf{a}} = -\partial_t (\mu h) \textcircled{\textcircled{}} \\ & \underbrace{\operatorname{div} \mathbf{b} = 0, \quad \operatorname{curl} \mathbf{e} = -\partial_t \mathbf{b}, \quad \mathbf{e} = \mathbf{e}_{\mathbf{a}} + \rho \mathbf{j}, \quad \mathbf{b} = \mu \mathbf{h}, \\ & \underbrace{(\mathbf{e} - \bar{\mathbf{e}}) \times \mathbf{n}|_{\Gamma_e} = \mathbf{0}}_{\bigotimes}, \quad \underbrace{V_i = \bar{V}_i \text{ for } i \in C_V}_{\bigoplus}. \end{array}$$

• Multiply \circledast by a test function h', in the same space than h but with homogeneous BC, and integrate over Ω ,

$$\begin{split} &(\partial_t(\mu \boldsymbol{h}) \ , \boldsymbol{h}')_{\Omega} + (\mathbf{curl} \ (\rho \ \mathbf{curl} \ \boldsymbol{h}) \ , \boldsymbol{h}')_{\Omega} + (\mathbf{curl} \ \boldsymbol{e}_{\mathbf{a}} \ , \boldsymbol{h}')_{\Omega} = 0, \\ \Rightarrow &(\partial_t(\mu \boldsymbol{h}) \ , \boldsymbol{h}')_{\Omega} + (\rho \ \mathbf{curl} \ \boldsymbol{h} \ , \mathbf{curl} \ \boldsymbol{h}')_{\Omega_c} + \underbrace{(\boldsymbol{e}_{\mathbf{a}} \ , \mathbf{curl} \ \boldsymbol{h}')_{\Omega_c}}_{\textcircled{\baselineskip}} \\ &- (e \underbrace{(\boldsymbol{e}_{\mathbf{a}} + \rho \ \mathbf{curl} \ \boldsymbol{h}) \times \boldsymbol{n}}_{\text{Neumann BC} \circledcirc} \ , \ \boldsymbol{h}')_{\Gamma_e} = 0 \end{split}$$

Université Derivation of the $h-\phi$ -formulation, cont'd

• The third term simplifies

$$(\boldsymbol{e}_{a}, \operatorname{\boldsymbol{curl}} \boldsymbol{h}')_{\Omega_{c}} = V \left(\delta(\boldsymbol{\xi} - \boldsymbol{\xi}_{\Sigma})\boldsymbol{n}, \operatorname{\boldsymbol{curl}} \boldsymbol{h}'\right)_{\Omega_{c}}$$
$$= V \left(\boldsymbol{n}, \operatorname{\boldsymbol{curl}} \boldsymbol{h}'\right)_{\Sigma}$$
$$= V \oint_{\partial \Sigma} \boldsymbol{h}' \cdot d\boldsymbol{\ell}$$
$$= VI' = \overline{V}I' \qquad (\operatorname{Ampère's} \operatorname{law} + \textcircled{}).$$

LIÈGE Université Derivation of the $h-\phi$ -formulation, cont'd

What about div $\boldsymbol{b} = 0$?

• Taking $m{h}' = {f grad} \ \phi'$ in the formulation yields

$$\begin{split} &(\partial_t(\mu \boldsymbol{h}) \text{ , grad } \phi')_{\Omega} + (\operatorname{curl} (\boldsymbol{e}_{\mathrm{a}} + \rho \operatorname{curl} \boldsymbol{h}) \text{ , grad } \phi')_{\Omega} = 0, \\ \Rightarrow &- (\operatorname{div} (\partial_t(\mu \boldsymbol{h})) \text{ , } \phi')_{\Omega} + (\partial_t(\mu \boldsymbol{h}) \cdot \boldsymbol{n} \text{ , } \phi')_{\Gamma_e} \\ &- (\bar{\boldsymbol{e}} \times \boldsymbol{n} \text{ , grad } \phi')_{\Gamma_e} = 0. \end{split}$$

One can show that $(\partial_t(\mu h) \cdot n , \phi')_{\Gamma_e} = (e \times n , \text{grad } \phi')_{\Gamma_e}$, so with $(e - \bar{e}) \times n|_{\Gamma_e} = 0$, what remains is

$$\partial_t \Big(\left(\mathsf{div} \ (\mu h) \ , \phi' \right)_\Omega \Big) = 0,$$

such that div $\boldsymbol{b} = 0$ is (weakly) verified if the initial condition \boldsymbol{h}_{t_0} is such that (div $(\mu \boldsymbol{h}_{t_0})$, $\phi')_{\Omega} = 0$.

Finally, the <u>*h*- ϕ -formulation</u> amounts to find *h* in the chosen function space such that, $\forall h'$,

$$\begin{split} \left(\partial_t (\mu \boldsymbol{h}) \ , \boldsymbol{h}' \right)_{\Omega} &+ \left(\rho \ \mathbf{curl} \ \boldsymbol{h} \ , \mathbf{curl} \ \boldsymbol{h}' \right)_{\Omega_c} \\ &- \left(\bar{\boldsymbol{e}} \times \boldsymbol{n} \ , \boldsymbol{h}' \right)_{\Gamma_e} + \sum_{i=1}^N V_i \mathcal{I}_i(\boldsymbol{h}') = 0, \end{split}$$

with $V_i = \overline{V}_i$ for $i \in C_V$, and $\mathcal{I}_i(\mathbf{h}') = I'_i$ (i.e. the DoF associated with the cut function c_i).

h- ϕ -formulation – Interpretation

When the test function c_i ($\mathcal{I}_i(c_i) = 1$) is chosen, we get the equation:

NB: The flux of μh depends on the chosen cut as μh is not a 2-form (as b should be). Same for ρj . Simple finite element formulations The a-v-formulation The h- ϕ -formulation

Resolution techniques

Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

Structure of the resolution

• After spatial discretization, we obtain a system of time-dependent, nonlinear ordinary differential equations of the form

 $\boldsymbol{K}(\boldsymbol{x},t)\,\dot{\boldsymbol{x}}(t) + \boldsymbol{M}(\boldsymbol{x},t)\,\boldsymbol{x}(t) = \boldsymbol{b}(t)$

Structure of the resolution

• After spatial discretization, we obtain a system of time-dependent, nonlinear ordinary differential equations of the form

$$\boldsymbol{K}(\boldsymbol{x},t)\,\dot{\boldsymbol{x}}(t) + \boldsymbol{M}(\boldsymbol{x},t)\,\boldsymbol{x}(t) = \boldsymbol{b}(t)$$

- Resolution: two imbricated loops
 - Time-stepping: Implicit Euler with adaptive time steps t_n
 - Iterative solution of the nonlinear system at each time step t_n : Newton-Raphson or fixed point (Picard)

Simple finite element formulations The a-v-formulation The h- ϕ -formulation

Resolution techniques Time integration

Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

Implicit Euler

Time derivatives at time step t_n are expressed as:

$$\frac{d\boldsymbol{x}}{dt}(t_n) = \frac{\boldsymbol{x}(t_n) - \boldsymbol{x}(t_{n-1})}{\Delta t},$$

with $\boldsymbol{x}(t_n)$ containing the DoFs and $\boldsymbol{u}(t_{n-1})$ being known from the initial conditions (first step) or from the previous step.

At each step t_n we end up with a system of nonlinear equations of the form

$$\boldsymbol{A}(\boldsymbol{x}(t_n))\,\boldsymbol{x}(t_n) = \boldsymbol{b}(t_n)$$

Implicit Euler

Time derivatives at time step t_n are expressed as:

$$\frac{d\boldsymbol{x}}{dt}(t_n) = \frac{\boldsymbol{x}(t_n) - \boldsymbol{x}(t_{n-1})}{\Delta t},$$

with $\boldsymbol{x}(t_n)$ containing the DoFs and $\boldsymbol{u}(t_{n-1})$ being known from the initial conditions (first step) or from the previous step.

At each step t_n we end up with a system of nonlinear equations of the form

$$\boldsymbol{A}(\boldsymbol{x}(t_n))\,\boldsymbol{x}(t_n) = \boldsymbol{b}(t_n)$$

Other possibilities can be implemented:

- Explicit Euler,
- Crank-Nicholson,
- Higher-order schemes (e.g. BDF)...

 \Rightarrow In Life-HTS we just explicitly write the scheme in the GetDP formulation.

Life-HTS implicit Euler in formulation

Example: flux variation term $(\partial_t(\mu h), h')_{\Omega}$ in $h-\phi$ -formulation

$$\left(rac{\mu oldsymbol{h}_n}{\Delta t} \,, oldsymbol{h}'
ight)_\Omega - \left(rac{\mu oldsymbol{h}_{n-1}}{\Delta t} \,, oldsymbol{h}'
ight)_\Omega$$

```
Formulation {
    { Name MagDyn_htot; Type FemEquation;
    Quantity {
        { Name h; Type Local; NameOfSpace h_space; }
        { [...] }
    }
    Equation {
        // Flux variation term (on the linear magnetic domain)
        Galerkin { [ mu[] * Dof{h} / $DTime , {h} ];
        In MagnLinDomain; Integration Int; Jacobian Vol; }
        Galerkin { [ - mu[] * {h}[1] / $DTime , {h} ];
        In MagnLinDomain; Integration Int; Jacobian Vol; }
        [...]
} } }
```

Syntax:

- $Dof{h}$: DoF at the current time step n (and iteration),
- {h}[i]: saved/known solution of \boldsymbol{h} at time step $n-\mathtt{i}$,
- $\{h\}$: solution at the previous iteration (see later).

Adaptive time-stepping

Parameters:

- $\gamma = 1/2$
- $\beta = 2$
- $i_{\text{fast}} = i_{\text{max}}/4$
- Fixed-point: $i_{\rm max} = 400$
- Newton-Raphson

 $i_{\rm max} = 50$

3

Life-HTS time-stepping in resolution

```
Resolution {
 { Name MagDvn:
   System { {Name A; NameOfFormulation MagDyn htot; } }
   Operation {
      [...]
     // Initialize}
      SetTime[ timeStart ]: SetDTime[ dt ]: SetTimeStep[ 0 ]:
     // Time loop
      While [$Time < timeFinalSimu && $DTime > 1e-10] {
        SetTime[ $Time + $DTime ]: SetTimeStep[ $TimeStep + 1 ]:
       // Customized iterative loop
       Call CustomIterativeLoop;
       // If converged (= less than iter max and not diverged)...
       Test[ $iter < iter_max && ($res / $res0 <= 1e10)]{
          SaveSolution[A]:
         Test[ $iter < iter max / 2 && $DTime < dt max]{
            Evaluate[ $dt new = Min[$DTime * 2. dt max] ]:
            SetDTime[$dt new];
          }
        }
       // ... otherwise, decrease the time step and start again
          RemoveLastSolution[A];
          Evaluate[ $dt new = $DTime / 2 ];
          SetDTime[$dt new]:
          SetTime[$Time - $DTime]; SetTimeStep[$TimeStep - 1];
       }
     }
   3
 }
```

Simple finite element formulations The *a-v*-formulation The *h-φ*-formulation

Resolution techniques

Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

Solving a nonlinear equation: f(x) = b

1. Picard iteration method (a fixed point method):

- Write f(x) as f(x) = A(x)x.
- Get a first estimate x_0 .
- At each iteration *i*:
 - solve $A(x_{i-1})x = b$,
 - $x_i := x_i$
 - i := i + 1 and loop.
- Stop when convergence criterion is met.
- May converge for wide range of first estimates x_0 .
- Convergence is slow!

Solving a nonlinear equation: f(x) = b

2. Newton-Raphson iterative method:

- Get a first estimate x_0 .
- At each iteration i, solve for x_i :

$$\frac{df}{dx}(x_{i-1})(x_i - x_{i-1}) = f(x_{i-1}).$$

• Stop when convergence criterion is met.

- Quadratic convergence, if the initial est. x_0 is close enough.
- Relaxation factors can also be implemented.
- If x is a vector, $\frac{df}{dx}$ is a matrix (Jacobian matrix)...

Jacobian for isotropic constitutive laws

• Consider a constitutive law of the form

$$\boldsymbol{a}(\boldsymbol{x}) = g(\|\boldsymbol{x}\|) \boldsymbol{x}.$$

Example: $\boldsymbol{e}=
ho\,\boldsymbol{j}$, or $\boldsymbol{b}=\mu\,\boldsymbol{h}$, …

• The Newton-Raphson expansion can be cast in the form

$$oldsymbol{a}(oldsymbol{x}^i) pprox oldsymbol{a}(oldsymbol{x}^{i-1}) + oldsymbol{J}(oldsymbol{x}^{i-1}) \cdot ig(oldsymbol{x}^i - oldsymbol{x}^{i-1}ig),$$

where J is the Jacobian matrix (*i* is the iteration index):

$$(\boldsymbol{J}(\boldsymbol{x}))_{jk} = \frac{\partial a_j}{\partial x_k} = \delta_{jk} g(\|\boldsymbol{x}\|) + x_j x_k \frac{\frac{dg(\|\boldsymbol{x}\|)}{d\|\boldsymbol{x}\|}}{\|\boldsymbol{x}\|}.$$

Jacobian for isotropic constitutive laws

• Consider a constitutive law of the form

$$\boldsymbol{a}(\boldsymbol{x}) = g(\|\boldsymbol{x}\|) \boldsymbol{x}.$$

Example: $\boldsymbol{e}=
ho\,\boldsymbol{j}$, or $\boldsymbol{b}=\mu\,\boldsymbol{h}$, …

• The Newton-Raphson expansion can be cast in the form

$$oldsymbol{a}(oldsymbol{x}^i) pprox oldsymbol{a}(oldsymbol{x}^{i-1}) + oldsymbol{J}(oldsymbol{x}^{i-1}) \cdot igg(oldsymbol{x}^i - oldsymbol{x}^{i-1}igg),$$

where J is the Jacobian matrix (*i* is the iteration index):

$$(\boldsymbol{J}(\boldsymbol{x}))_{jk} = \frac{\partial a_j}{\partial x_k} = \delta_{jk} g(\|\boldsymbol{x}\|) + x_j x_k \frac{\frac{dg(\|\boldsymbol{x}\|)}{d\|\boldsymbol{x}\|}}{\|\boldsymbol{x}\|}.$$

• Example: $(\rho \operatorname{\mathbf{curl}} \boldsymbol{h}, \operatorname{\mathbf{curl}} \boldsymbol{h}')_{\Omega_c}$ in $h - \phi$ -formulation, with $\operatorname{\mathbf{curl}} \boldsymbol{h} = \boldsymbol{j}$:

$$\left(\rho(\boldsymbol{j}^{i-1})\,\boldsymbol{j}^{i-1}\;, \operatorname{curl}\,\boldsymbol{h}'\right)_{\Omega_{\mathrm{c}}} + \left(\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{j}}(\boldsymbol{j}^{i-1})\;\boldsymbol{j}^{i}\;, \operatorname{curl}\,\boldsymbol{h}'\right)_{\Omega_{\mathrm{c}}} - \left(\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{j}}(\boldsymbol{j}^{i-1})\;\boldsymbol{j}^{i-1}\;, \operatorname{curl}\,\boldsymbol{h}'\right)_{\Omega_{\mathrm{c}}}$$

Worked-out Jacobians in [J. Dular et al. TAS 30 8200113 (2020)]

Life-HTS Picard and Newton-Raphson in formulation

Example: nonlinear term $(\rho \operatorname{\mathbf{curl}} \boldsymbol{h}, \operatorname{\mathbf{curl}} \boldsymbol{h}')_{\Omega_{\mathrm{c}}}$ in $h-\phi$ -formulation

$$\mathsf{N-R:} \quad \left(\rho(\boldsymbol{j}^{i-1})\,\boldsymbol{j}^{i-1}\;, \mathsf{curl}\;\boldsymbol{h}'\right)_{\Omega_{\mathrm{c}}} + \left(\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{j}}(\boldsymbol{j}^{i-1})\;\boldsymbol{j}^{i}\;, \mathsf{curl}\;\boldsymbol{h}'\right)_{\Omega_{\mathrm{c}}} - \left(\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{j}}(\boldsymbol{j}^{i-1})\;\boldsymbol{j}^{i-1}\;, \mathsf{curl}\;\boldsymbol{h}'\right)_{\Omega_{\mathrm{c}}}$$

```
Formulation {
  { Name MagDyn_htot; Type FemEquation;
    Quantity {
      { Name h; Type Local; NameOfSpace h_space; }
      { [...] }
    3
    Equation {
     // (1) Picard
      Galerkin { [ rho[{d h}]] * Dof{d h} , {d h} ];
        In NonLinOmegaC; Integration Int; Jacobian Vol; }
      // (2) Newton-Raphson}
      Galerkin { [ rho[{d h}] * {d h} ] . {d h} ]:
        In NonLinOmegaC; Integration Int; Jacobian Vol; }
      Galerkin { [ dedj[{d h}] * Dof{d h} , {d h} ];
        In NonLinOmegaC; Integration Int; Jacobian Vol; }
      Galerkin { [ - dedj[{d h}] * {d h} , {d h} ];
        In NonLinOmegaC ; Integration Int; Jacobian Vol; }
      [...]
} } }
```


Choosing the first estimate

- It can significantly affect the required number of iterations
- Best results:
 - 1st order for the h- ϕ -formulation
 - 2nd order for the *a-v*-formulation

In the resolution: SetExtrapolationOrder[n]; $(n \in \mathbb{N})$

Convergence criterion

- The residual $oldsymbol{b} oldsymbol{A}(oldsymbol{x}_i) oldsymbol{x}_i$ can be misleading
- In practice we usually choose the electromagnetic power, *P*, as a (global) convergence indicator:

h- ϕ -formulation

$$P = \left(\partial_t(\mu\,m{h})\,\,,m{h}
ight)_\Omega + \left(
ho\,{
m curl}\,\,m{h}\,\,,{
m curl}\,\,m{h}
ight)_{\Omega_{
m c}}$$

a-v-formulation

$$P = (\partial_t ({f curl} \; oldsymbol{a}) \; ,
u \, {f curl} \; oldsymbol{a})_\Omega + (\sigma oldsymbol{e} \; , oldsymbol{e})_{\Omega_{
m c}}$$

with $\boldsymbol{e} = -\partial_t \boldsymbol{a} - \mathbf{grad} \ v$

- We stop when $|\Delta P/P|$ is small enough:
 - $\approx 10^{-8}$ with Newton-Raphson
 - $\approx 10^{-4}$ with Picard

Simple finite element formulations The a-v-formulation The h- ϕ -formulation

Resolution techniques

Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

To fix ideas: a superconducting ring

Consider a superconducting ring subjected to a time-varying flux, $\dot{\Phi}.$ The ring is modelled as a non-linear lump resistor with

$$R(|I|) = \frac{V_c}{I_c} \left(\frac{|I|}{I_c}\right)^{n-1},$$

where V_c and I_c are characteristic voltage and current, and n is a critical index.

To fix ideas: a superconducting ring

Consider a superconducting ring subjected to a time-varying flux, $\dot{\Phi}$. The ring is modelled as a non-linear lump resistor with

$$R(|I|) = \frac{V_c}{I_c} \left(\frac{|I|}{I_c}\right)^{n-1},$$

where V_c and I_c are characteristic voltage and current, and \boldsymbol{n} is a critical index.

The circuit equation

$$\dot{\Phi} = R(|I|) I + L\dot{I}$$

can be solved in one of two ways!

Ring, 1^{st} way: solve for the current I

- Discretize in time: $t_j = j\Delta t, j = 0, 1, 2, \dots$,
- Consider the implicit Euler method with $\dot{I} pprox (I_j I_{j-1})/\Delta t$,

$$\dot{\Phi} = R(|I|) I + L\dot{I} \quad \to \quad \dot{\Phi}_j = V_c \frac{|I_j|^{n-1} I_j}{I_c^n} + L \frac{I_j - I_{j-1}}{\Delta t}.$$

Ring, 1^{st} way: solve for the current I

- Discretize in time: $t_j = j\Delta t, j = 0, 1, 2, \dots$,
- Consider the implicit Euler method with $\dot{I} \approx (I_j I_{j-1})/\Delta t$,

$$\dot{\Phi} = R(|I|) I + L\dot{I} \quad \to \quad \dot{\Phi}_j = V_c \frac{|I_j|^{n-1} I_j}{I_c^n} + L \frac{I_j - I_{j-1}}{\Delta t}.$$

- Make this adimensional by introducing $x = a I_j / I_c$, to obtain

$$b = |x|^{n-1} x + x, \quad (I\text{-form}),$$

where

$$a = \left(\frac{V_c \Delta t}{LI_c}\right)^{1/(n-1)}$$
 and $b = \frac{\dot{\Phi}_j + LI_{j-1}/\Delta t}{aLI_c/\Delta t}$.

Ring, 2^{nd} way: solve for the voltage drop across R

• Solve now in terms of $V_j = RI_j$,

$$\dot{\Phi} = R(|I|) I + L\dot{I} \quad \to \quad \dot{\Phi}_j = V_j + L \frac{I_c |V_j/V_c|^{1/n-1} V_j/V_c - I_{j-1}}{\Delta t}.$$

Ring, 2^{nd} way: solve for the voltage drop across R

• Solve now in terms of $V_j = RI_j$,

$$\dot{\Phi} = R(|I|) I + L\dot{I} \quad \to \quad \dot{\Phi}_j = V_j + L \frac{I_c |V_j/V_c|^{1/n-1} V_j/V_c - I_{j-1}}{\Delta t}.$$

- Make this adimensional with $x = c V_j / V_c$, to get

$$d = |x|^{1/n-1} x + x, \quad (V-form),$$

where

$$c = \left(\frac{\Delta t}{LI_c}\right)^{n/(n-1)}$$
 and $d = \frac{\dot{\Phi}_j}{c} + \frac{LI_{j-1}}{c\Delta t}.$

Ring example, summary

In each case, need to solve an equation of the form f(x) = constant:

I-form \sim h-conform (Ampère)

V-form \sim b-conform (Faraday)

Nonlinearity in HTS for complementary formulations

Different nonlinearities \Rightarrow different numerical behaviors

Warning!

Beware of cycles

Cycles can occur in each method, depending on the shape of the function f(x):

Relaxation factors can help, but no efficient solution (that we know of)

System

Side
$$a = 10 \text{ mm.}$$

 $\mu_0 h_s = \hat{z} B_0 \sin(2\pi f t)$,
with $B_0 = 200 \text{ mT}$,
 $f = 50 \text{ Hz}$,
 $j_c = 10^8 \text{ A/m}^2$ and
 $n = 100$.

Residual

- L_2 norm of $\boldsymbol{r} = \boldsymbol{A}\boldsymbol{x} \boldsymbol{b}$
- Left: h- ϕ -formulation
- Right: *a-v*-formulation

(b) Picard technique.

 \Rightarrow Much more efficient with Newton-Raphson (as is expected!)

Hands-on: h- ϕ - and a-v-formulation

Magnetization of a superconducting pellet: phenomenology

Magnetize a cylindrical pellet of aspect ratio 0.5 (height/diameter) in an axial field of maximum $0.6~\times$ the penetration field:

Hands-on: h- ϕ - and a-v-formulation

Magnetization of a superconducting pellet: h- ϕ -formulation and a-v-formulation

models/Life-HTS/cylinder/cylinder.pro

Conclusion for HTS

The diverging slope associated with $\boldsymbol{j} = \sigma \boldsymbol{e}$ for $\boldsymbol{j} \to 0$ is really difficult to handle.

 \Rightarrow Among the two simple formulations, the <u>h- ϕ -formulation</u> is much more efficient for systems with HTS:

- with an adaptive time-stepping algorithm,
- solved with a Newton-Raphson method,
- \bullet with a first estimate obtained by $1^{\mbox{st-order}}$ extrapolation.

LIÈGE Université One particular case: "single time step"

- For large values of *n*, nearly a critical state model.
- Robustness of Picard on the $j = \sigma e$ law can help to reduce the number of time steps.

- Here, for a magnetization cycle (3D cube problem)
 - lines: $h-\phi$ -formulation with 300 time steps,
 - dots: a-v-formulation with 20 time steps \Rightarrow much faster!
- In practice, accurate for \boldsymbol{j} and \boldsymbol{b} , but \boldsymbol{e} is underestimated

Simple finite element formulations The *a-v*-formulation The *h-φ*-formulation

Resolution techniques Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations

The $h(-\phi)$ -*a*-formulation The *t*-*a*-formulation

Illustrations

Summary

References

Ferromagnetic materials

The nonlinearity is in the magnetic constitutive law.

• h- ϕ -formulation the involved law is $b = \mu h$.

 \Rightarrow Easily enters cycles with Newton-Raphson. OK with Picard, or N-R with relaxation factors but slow.

Ferromagnetic materials

The nonlinearity is in the magnetic constitutive law.

• h- ϕ -formulation the involved law is $b = \mu h$.

 \Rightarrow Easily enters cycles with Newton-Raphson. OK with Picard, or N-R with relaxation factors but slow.

• a-v-formulation the involved law is $h = \nu b$.

 \Rightarrow Efficiently solved with Newton-Raphson.

The <u>a-v-formulation</u> is more appropriate for dealing with the nonlinearity, whereas for HTS, the complementary formulation was best.

Simple finite element formulations The *a-v*-formulation The *h-φ*-formulation

Resolution techniques Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

Use the best formulation in each material

Decompose the domain Ω , for example into:

- $\Omega^h = \{\mathsf{HTS}\}$
- $\Omega^a = \{\text{Ferromagnet}, \text{Air}\}$

and couple via $\Gamma_{m} = \partial(HTS)$:

$$\begin{split} \left(\partial_t(\mu \boldsymbol{h}) \ , \boldsymbol{h}'\right)_{\Omega^h} + \left(\rho \operatorname{curl} \, \boldsymbol{h} \ , \operatorname{curl} \, \boldsymbol{h}'\right)_{\Omega^h_c} + \left(\partial_t \boldsymbol{a} \times \boldsymbol{n}_{\Omega^h} \ , \boldsymbol{h}'\right)_{\Gamma_{\mathrm{m}}} = 0, \\ (\nu \operatorname{curl} \, \boldsymbol{a} \ , \operatorname{curl} \, \boldsymbol{a}')_{\Omega^a} - \left(\boldsymbol{h} \times \boldsymbol{n}_{\Omega^a} \ , \boldsymbol{a}'\right)_{\Gamma_{\mathrm{m}}} = 0. \end{split}$$

(For homogeneous Neumann BC)

$h(-\phi)$ -a-formulation results

Example:

- Stacked cylinders
- 2D axisymmetric
- External applied field

Number of iterations for three discretization levels:

	h - ϕ -formulation	<i>a</i> - <i>v</i> -formulation	$h(-\phi)$ -a-formulation	
Coarse	1878	4381	1071	
Medium	3366	7539	1931	
Fine	4422	14594	3753	

In general, a speed-up from 1.2 to 3 is obtained.

$h(-\phi)$ -a-formulation stability

The formulation is mixed (two unknown fields on $\Gamma_{\rm m})$

- \Rightarrow Shape functions must satisfy an inf-sup condition.
- First-order functions for h and a (inf-sup KO)

• Second-order for a, first-order for h (inf-sup OK)

Life-HTS Hierarchical functions

Example for 2nd-order shape functions for a (in 2D) on Γ_m :

```
FunctionSpace {
 { Name a_space_2D; Type Form1P;
    BasisFunction {
      // Usual first-order functions
      { Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
        Support Omega a AndBnd; Entity NodesOf[All]; }
      // Second-order functions on BndOmega ha only
      { Name psin2: NameOfCoef an2: Function BF PerpendicularEdge 2E:
        Support Omega_a_AndBnd; Entity EdgesOf[BndOmega_ha]; }
   }
   Constraint {
      { NameOfCoef an; EntityType NodesOf; NameOfConstraint a; }
      { NameOfCoef an2; EntityType EdgesOf; NameOfConstraint a2; }
   }
 }
}
                               \psi_n
                                                                                \psi_{n2}
```


Life-HTS Hierarchical functions

Example for 2nd-order shape functions for a (in 2D) on Γ_m :

```
FunctionSpace {
 { Name a space 2D; Type Form1P;
    BasisFunction {
      // Usual first-order functions
      { Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
        Support Omega_a_AndBnd; Entity NodesOf[All]; }
      // Second-order functions on BndOmega ha only
      { Name psin2: NameOfCoef an2: Function BF PerpendicularEdge 2E:
        Support Omega a AndBnd: Entity EdgesOf [BndOmega ha]: }
    }
   Constraint {
      { NameOfCoef an; EntityType NodesOf; NameOfConstraint a; }
      { NameOfCoef an2; EntityType EdgesOf; NameOfConstraint a2; }
   }
 }
3
                               \psi_n
                                                                                 \psi_{n2}
```

NB: This is for a locally enriched function space. Using 2^{nd} -order elements on the whole domain can be done directly at the meshing step (using e.g. gmsh -order 2).

Simple finite element formulations The *a-v*-formulation The *h-φ*-formulation

Resolution techniques Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations

The $h(-\phi)$ -*a*-formulation The *t*-*a*-formulation

Illustrations

Summary

References

HTS tapes - *t-a-formulation*

To model thin superconducting tapes, two main possibilities:

1. Use the true geometry and the <u> $h-\phi$ -formulation</u> with one-element across the thickness (quadrangle):

2. Perform the slab approximation and model the tape as a line \Rightarrow *t*-*a*-formulation:

t-a-formulation

Consider a tape Γ_w of thickness w.

The current density is described by a current potential t:

- such that $j = \operatorname{{f curl}} t$,
- gauged by being defined along the normal of the tape, $m{t}=tm{n}$,
- with BC related to the total current I $(t^+ t^- = I/w)$.

In Ω_a , write the <u>a-v-formulation</u> and express the surface integral $(\mathbf{h} \times \mathbf{n}, \mathbf{a}')_{\Gamma_w}$ in terms of the surface current density $w \operatorname{curl} \mathbf{t}$.

t-a-formulation

Find a and t in the chosen function spaces such that, orall a', t':

$$\begin{aligned} (\nu \operatorname{curl} \boldsymbol{a} \ , \operatorname{curl} \boldsymbol{a}')_{\Omega_a} &- \left(\bar{\boldsymbol{h}} \times \boldsymbol{n}_{\Omega} \ , \boldsymbol{a}' \right)_{\Gamma_h} - (w \operatorname{curl} \boldsymbol{t} \ , \boldsymbol{a}')_{\Gamma_w} = 0, \\ (w \ \partial_t \boldsymbol{a} \ , \operatorname{curl} \boldsymbol{t}')_{\Gamma_w} &+ (w \ \rho \operatorname{curl} \boldsymbol{t} \ , \operatorname{curl} \boldsymbol{t}')_{\Gamma_w} = - \sum_{i \in C} V_i \mathcal{I}_i(\boldsymbol{t}'), \end{aligned}$$

with $V_i = \overline{V}_i$ for $i \in C_V$, and $\mathcal{I}_i(t') = I'_i$ (i.e. the DoF associated with the BC $w(t^+ - t^-)$).

It is basically an $\left| \, h(\text{-}\phi)\text{-}a\text{-}\text{formulation} \, \right|$ with a slab approximation

 \Rightarrow More information and applications in F. Grilli's lecture tomorrow

See also [Bortot, L., et al., IEEE TAS 30(5), 1-11 (2020)]

t-a-formulation - Stability

The *t*-*a*-formulation is mixed (two unknown fields on Γ_w)

 \Rightarrow Shape functions must satisfy an inf-sup condition

Similar conclusions than with the $\fbox{h(-\phi)-a-formulation}$

Example for a 2D case, current density along the tape:

Life-HTS function space for t

Defined as a scalar quantity in the FunctionSpace, the normal n is introduced in the formulation:

$$t = \sum_{n \in \Gamma_w \setminus \partial \Gamma_w} t_n \psi_n + \sum_{i=1}^N T_i \ell_i, \text{ with } t = t \mathbf{n}.$$

```
FunctionSpace {
  { Name t_space; Type Form0;
    BasisFunction {
      // Node functions except on the lateral edges of the tapes
      { Name psin; NameOfCoef tn; Function BF Node;
        Support Gamma w; Entity NodesOf [All, Not LateralEdges]; }
      // Global shape function for representing a net current intensity
      { Name elli: NameOfCoef Ti: Function BF GroupOfNodes:
        Support Gamma w AndBnd; Entity GroupsOfNodesOf[PositiveEdges]; }
    Ъ
    GlobalQuantity {
      // Global quantities to be used in the formulation
      { Name T : Type AliasOf
                                    : NameOfCoef Ti : }
      { Name V ; Type AssociatedWith ; NameOfCoef Ti ; }
    3
    Constraint {
      { NameOfCoef V; EntityType GroupsOfNodesOf; NameOfConstraint Voltage; }
      { NameOfCoef T; EntityType GroupsOfNodesOf; NameOfConstraint Current w; }
   3
 }
}
```


Hands-on: 3D HTS magnet motor pole

One eight of the geometry (air domain not shown)

models/Life-HTS/magnet/magnet.pro

-	NL laws	Function space	Number of DOFs	$\sigma \neq 0$ in Ω_c^C ?
h	ρ, μ	$h \in \mathcal{H}(\Omega) = \{h \in H(\Omega)\}$	Edges in Ω	Yes
h - ϕ	ρ, μ	$h \in \mathcal{H}_{\phi}(\Omega) = \{h \in H(\Omega) \mid \operatorname{curl} h = 0 \text{ in } \Omega_{c}^{C}\}$	Edges in Ω_c + Nodes in Ω_c^C	No
\bar{a}	σ, ν	$a \in \overline{A}(\Omega) = \{a \in H(\Omega)\}$	Edges in Ω	(Yes)*
a	σ, ν	$\boldsymbol{a} \in \mathcal{A}(\Omega) = \{ \boldsymbol{a} \in H(\Omega) \mid \text{co-tree gauge in } \Omega_{c}^{C} \}$	Edges in Ω_c + Facets in Ω_c^C	No
h- a	ρ, ν	$h \in \mathcal{H}_{\phi}(\Omega_{c}), a \in \mathcal{A}(\Omega_{c}^{C})$	Edges in Ω_c + Facets [†] in Ω_c^C	No
h - ϕ - a	ρ, ν	$\boldsymbol{h} \in \mathcal{H}_{\phi}(\Omega_{\mathrm{m}}^{\mathrm{C}}), \boldsymbol{a} \in \mathcal{A}(\Omega_{\mathrm{m}})$	Edges in $\Omega_{h,c}$ + Nodes [†] in $\Omega_{h,c}^{C}$ + Facets in Ω_{m}	No
h - ϕ - b	ρ, ν	$\boldsymbol{h} \in \mathcal{H}_{\phi}(\Omega), \boldsymbol{b} \in (H_3(\Omega_m))^3$	Edges in Ω_c + Nodes in Ω_c^C + Volumes (×3) in Ω_m	No
a- j	ρ, ν	$\boldsymbol{a} \in \mathcal{A}(\Omega), \boldsymbol{j} \in \mathcal{A}(\Omega_{c})$	Edges (×2) in Ω_c + Facets in Ω_c^C	No

Current density in the bulk during magnetizing pulse and relaxation

[J. Dular et al. IEEE Trans. Mag. (2022)]

	HTS loss (J)	# DOFs	# iterations	Time/it.	Total time
h	6.35	35,532	4,057	3.3s	3h42
h - ϕ	6.36	12,172	3,937	1.4s	1h33
\bar{a}	6.38	29,010	2,955	3.1s	2h33
a	6.39	26,964	3,147	2.1s	1h48
h- a	6.31	32,045	1,124	2.7s	0h50
h - ϕ - a	6.33	15,776	1,108	2.1s	0h39
h - ϕ - b	6.37	20,821	1,104	3.2s	0h58
a- j	6.34	36,019	2,225	3.6s	2h15

Simple finite element formulations The *a-v*-formulation The *h-φ*-formulation

Resolution techniques Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

Improving HTS magnetic shields with a soft ferromagnetic material

Shielding an axial field with a HTS tube

Shielding with an additional ferromagnetic tube

[Lousberg et al., TAS (2010)]

Protecting a bulk HTS against crossedfield demagnetisation with a ferromagnetic layer

Sequence of applied fields

Current distribution in the bulk with a ferromagnetic top layer ($\mu_r = 10, 100$)

[Fagnard et al., SUST (2016)]

Magnetic shielding in inhomogeneous fields

[Hogan et al., SUST (2018)]

Magnetic shielding, bulk superconducting cylinders and caps

Tracking stray fields in composite shields

Induced currents vs. geometries

[Fagnard et al., SUST (2019)]

Critical states in stacked Niobium films

Peculiar patterns of discontinuity lines in stacks of Nb films

 $L=200~\mu{\rm m},~d=t=300~{\rm nm}$

Needs to include a genuine $J_c(B)$ -dependence

Raising field stage

Decreasing field stage

[Burger et al., SUST (2019)]

Critical states in the presence of a ratchet pinning potential

Experiment: rotation of the central discontinuity line in the decreasing field stage, after magnetization

Model: an anisotropic pinning force reproduces the result

[Motta et al., Phys. Rev. B (2022)]

Rotating HTS motor

B [mT]

b

d [mm]

2D axisymmetric model of moving bulk superconductors

[M. Houbart et al., SUST (in press)]

Coil of HTS Tapes

h-a formulation with thermal coupling; tapes in parallel, series or end-coupled

Good agreement with reference results from COMSOL

[E. Schnaubelt et al. (2021)]

Simple finite element formulations The *a-v*-formulation The *h-φ*-formulation

Resolution techniques Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

- Overview of finite element formulations for high-temperature superconductors
 - "Simple" formulations: h- ϕ -formulation , a-v-formulation
 - Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of nonlinear constitutive law
 - For pure HTS problems, use $h\mathchar`-\phi\mathchar`-formulation with Newton-Raphson$
 - Adaptive time-stepping a must

- Overview of finite element formulations for high-temperature superconductors
 - "Simple" formulations: h- ϕ -formulation , a-v-formulation
 - Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of nonlinear constitutive law
 - For pure HTS problems, use $h\mathchar`-\phi\mathchar`-formulation with Newton-Raphson$
 - Adaptive time-stepping a must
 - Mixed formulations: $h(-\phi)$ -a-formulation , t-a-formulation
 - Useful for hybrid systems with ferromagnetic materials
 - Should be discretized with caution to ensure well-posedness

- Overview of finite element formulations for high-temperature superconductors
 - "Simple" formulations: h- ϕ -formulation , a-v-formulation
 - Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of nonlinear constitutive law
 - For pure HTS problems, use $h\mathchar`-\phi\mathchar`-formulation with Newton-Raphson$
 - Adaptive time-stepping a must
 - Mixed formulations: $h(-\phi)$ -a-formulation , t-a-formulation
 - Useful for hybrid systems with ferromagnetic materials
 - Should be discretized with caution to ensure well-posedness
- All formulations available in open source Life-HTS toolkit, based on ONELAB, Gmsh and GetDP

- Overview of finite element formulations for high-temperature superconductors
 - "Simple" formulations: h- ϕ -formulation , a-v-formulation
 - Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of nonlinear constitutive law
 - For pure HTS problems, use $h\mathchar`-\phi\mathchar`-formulation with Newton-Raphson$
 - Adaptive time-stepping a must
 - Mixed formulations: $h(-\phi)$ -a-formulation , t-a-formulation
 - Useful for hybrid systems with ferromagnetic materials
 - Should be discretized with caution to ensure well-posedness
- All formulations available in open source Life-HTS toolkit, based on ONELAB, Gmsh and GetDP
 - Several available or finding their way into commercial tools (e.g. COMSOL)

Simple finite element formulations The *a-v*-formulation The *h-φ*-formulation

Resolution techniques Time integration Linearization methods Comparison of the formulations

Mixed finite element formulations The $h(-\phi)$ -a-formulation The t-a-formulation

Illustrations

Summary

References

Main references

- ONELAB website, with codes, examples, and tutorials: https://onelab.info
- Life-HTS website: http://www.life-hts.uliege.be
- Finite Element Formulations for Systems with High-Temperature Superconductors, J. Dular, C. Geuzaine, and B. Vanderheyden, TAS 30 (2020) 8200113.
- On the Stability of Mixed Finite-Element Formulations for High-Temperature Superconductors,

J. Dular, M. Harutyunyan, L. Bortot, S. Schöps, B. Vanderheyden, and C. Geuzaine, TAS 31 (2021) 8200412

 What Formulation Should One Choose for Modeling a 3D HTS Motor Pole with Ferromagnetic Materials?,
J. Dular, K. Berger, C. Geuzaine, and B. Vanderheyden, IEEE Trans. Mag. (in press)

Post-Scriptum

For fun, go to the

- Google Play Store (if you are on Android)
- Apple AppStore (if you are on iOS)

and download the ONELAB app: it contains a full-featured version of Gmsh & GetDP

 \ldots so you can impress your friends by solving finite element problems with HTS on your smartphone!

Thanks for your attention

⊠ cgeuzaine@uliege.be