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Some background

• I am a professor at the University of Liège in Belgium, where I lead a team
of about 15 people in the Montefiore Institute (Electrical Engineering and
Computer Science Department), at the intersection of applied math,
electromagnetism and scientific computing

• Our research interests include modelling, analysis, algorithm development,
and simulation for problems arising in various areas of engineering and
science
• Current applications: electromagnetics, geophysics, biomedical problems

• We write quite a lot of codes, several released as open source software:
Gmsh, GetDP, ...

• Our toolkit for modelling superconductors: Life-HTS
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Life-HTS

http://www.life-hts.uliege.be

• Life-HTS: Liège University finite element
models for High-Temperature
Superconductors

• Numerical models for systems that contain
both superconducting and ferromagnetic
materials

More specifically:
• Transient analysis for calculating field maps, magnetization, eddy currents,

losses, . . .
• Stable schemes for dealing with nonlinear constitutive laws
• Includes formulations (e.g. h(-φ)-a) for combining ferromagnetic and

superconducting materials
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The city of Liège
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Life-HTS – Under the hood
Life-HTS is based on ONELAB (Open Numerical Engineering LABoratory),
an interface to
• the mesh generator Gmsh (https://gmsh.info)
• the finite element solver GetDP (https://getdp.info)

transformer induction heating rotating machine

Open-source, available for Windows, macOS, Linux, iOS, Android
Download from https://onelab.info

6

https://gmsh.info
https://getdp.info
https://onelab.info


Life-HTS – Under the hood

Some numbers:
• Gmsh and GetDP started in 1996, ONELAB in 2010
• About 500k lines of C++ code
• Released under the GNU GPL v2+ (free and open source)

• 3 main core developers; about 100 with ≥ 1 commit
• About 2,000 registered users on the development site

https://gitlab.onelab.info
• About 20,000 downloads per month (70% Windows)
• About 1,000 citations per year on Google Scholar; Gmsh has become one of

the most popular open source finite element mesh generators
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Hands-on: a first example
2D and 3D model of twisted HTS wires

Launch , then open models/Superconductors/helix.pro
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A Sketch of the Finite Element Method
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A simple 1D boundary value problem
• Solve

− d

dx

(
a(x) du

dx

)
+ b(x) u = f, 0 ≤ x ≤ 1,

with

a(x) = 1 + x, b(x) = 1
1 + x

, f(x) = 2
1 + x

,

and boundary conditions u(0) = 0 and u(1) = 1.

• Solution

u(x) = 2x
1 + x
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Finite Element Method: step 1

• Approximate u(x) in a finite dimensional space

um(x) = φ0(x) +
m∑
`=1

γ` φ`(x),

with φ0(x) = x such that φ0(0) = 0 and φ0(1) = 1, whereas

φ`(0) = 0, φ`(1) = 0, ` = 1, . . . ,m.

The linearly independent functions φ`(x), ` > 0 span an approximation
space, H0

m, of dimension m.

11



Finite Element Method: step 2
• Define the residual

r(x) = − d

dx

(
a(x) dum

dx

)
+ b(x) um − f(x),

and require r(x) to be orthogonal to H0
m, i.e.

(r, φk) = 0, k = 1, . . . ,m,

where (u, v) =
∫ 1
0 u(x)v(x)dx.

This gives, for k = 1, . . . ,m:

m∑
`=0

γ`

(
− d

dx

(
a(x) dφ`

dx

)
, φk

)
+ (b(x) φ`, φk) = (f(x), φk) ,

with γ0 = 1.
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Finite Element Method: steps 3 and 4
• Integrate by part to relax the differentiability requirements on φk and seek

for a weak solution,
m∑
`=1

ak,` γ` = (f(x), φk)− ak,0, k = 1, . . . ,m,

where

ak,` =
(
a(x) dφ`

dx
,
dφk
dx

)
+ (b(x) φ`, φk) .

• Choose functions φk with a restricted support. The resulting matrix
elements ak,` vanish for most (k, `) pairs.
A sparse system is obtained, which saves computational cost.
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Numerical example
Function space: use piece-wise linear

nodal functions (here, m = 3)
Approximate solution:
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Numerical example

Convergence when the mesh is refined:

100 101 102
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Finite Element Method: summary
• Need a function space for the approximations um,

um(x) = φ0(x) +
m∑
`=1

γ` φ`(x), with boundary conditions

• Impose (r, φk) = 0 in weak form for all φk, to get the linear system

Ax = b,

with

Ak,` =
(
a
dφ`
dx

,
dφk
dx

)
+ (bφ`, φk) , x` = γ`, and bk = (f, φk).

In Life-HTS, a problem is described by specifying the function space and the
weak form equations
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Finite Element Method with Life-HTS
• In practice, a text script (.pro file) contains the GetDP problem definition

structure
• A finite element mesh is required as input, built by Gmsh from a geometrical

description (script or CAD file)

Group

Function

Constraint

FunctionSpace

Jacobian

Integration

Formulation Resolution

PostOperation

PostProcessing

See https://onelab.info/slides/onelab.pdf for details
17
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Learning curve

www.theexcitedwriter.com
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Finite Element Formulations for
High-Temperature Superconductors

With technical details related to the Life-HTS implementation

19



Simple finite element formulations
The a-v-formulation
The h-φ-formulation

Resolution techniques
Time integration
Linearization methods
Comparison of the formulations

Mixed finite element formulations
The h(-φ)-a-formulation
The t-a-formulation

Illustrations

Summary

References



Introduction

Objective: Present and analyze various finite element formulations for modelling
HTS and their implementation in Life-HTS. We will follow the GetDP
philosophy:
• we will focus on building the weak form,
• and exploit the flexible function space possibilities, specifically for global

variables.
⇒ We will cover some technical details.

Important remark: One does not have to deal with these details for running
existing templates.
Details are however fundamental for investigating new models and/or
understanding the code.
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General framework: magneto-quasistatics

• We aim to solve Maxwell’s equations in the magneto-quasistatic
(“magnetodynamic”) approximation

curl h = j, curl e = −∂tb, div b = 0,

with
• h the magnetic field (A/m),
• j the current density (A/m2),
• e the electric field (V/m), and
• b the magnetic flux density (T),

while the displacement current ∂td is neglected

• Boundary conditions and constitutive laws relating b to h and e to j are
needed to obtain a well-posed problem
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Constitutive laws
1. High-temperature superconductors (HTS):

e = ρ(‖ j‖) j and b = µ0 h,

0 0.2 0.4 0.6 0.8 1
0

0.5

1

||j||/jc

||e
||/

e c

n = 10
n = 20
n = 100

where the electrical resistivity is given as

ρ(‖ j‖) = ec
jc

(
‖ j‖
jc

)n−1

,

with ec = 10−4 V/m,
jc, the critical current density,
n ∈ [10, 1000]

[C.J.G. Plummer and J. E. Evetts, IEEE TAS 23 (1987) 1179]
[E. Zeldov et al., Appl. Phys. Lett. 56 (1990) 680]

23



Constitutive laws
2. Ferromagnetic materials (FM):

b = µ(h)h and j = 0.

µ0 µri

µ0M

||h||

||b
||

Typical values (supra50):

• initial relative permeability µri = 1700

• saturation magnetization
µ0M = 1.3 T

Eddy currents are neglected

3. Air:
b = µ0 h and j = 0.
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Constitutive laws, extensions

One can also consider
• normal conductors and coils,
• permanent magnets,
• ferromagnetic materials with hysteresis (e.g. [K. Jacques, thesis (2018)])
• type-I superconductors (need a London length)
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Boundary conditions and global variables
Domain Ω decomposed into:
• Ωc, the conducting domain (Ωc = ∪Ni=1Ωci),
• ΩC

c , the complementary non-conducting
domain.

Ωc

ΩC
c

Γh

n

I

V

Γe

ẑ
ŷ
x̂

Boundary conditions:
1. Local conditions. On domain boundary ∂Ω = Γ:

• h× n = h̄× n, imposed on Γh,
• e× n = ē× n (or b · n = b̄ · n), imposed on Γe (= Γ\Γh).

2. Global conditions. Either the applied current Ii, or voltage Vi is imposed (or
a relation between them, not covered here) on each separate conducting
region Ωci ,
• Ii = Īi, imposed for i ∈ CI , a subset of C = {1, . . . , N},
• Vi = V̄i, imposed for i ∈ CV , the complementary subset.
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Summary
• Equations in Ω:

div b = 0, curl h = j, curl e = −∂tb.

• Constitutive laws:

e = ρ j, b = µh.

• Boundary conditions:

(h− h̄)× n|Γh = 0, (e− ē)× n|Γe = 0,
Ii = Īi for i ∈ CI , Vi = V̄i for i ∈ CV .

2D:

Ωc,1

ΩC
c

Γh

n

I1, V1

I2, V2

Γe Ωc,2

ẑ

ŷ

x̂ 3D:

Ωc

ΩC
c

Γh

n

I

V

Γe

ẑ
ŷ
x̂
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Finite element formulations

Two classes of formulations:
• h-conform, e.g. h-φ-formulation ,

• enforces the continuity of the tangential component of h,
• involves e = ρ j and b = µh,
• much used for HTS modelling.

• b-conform, e.g. a-v-formulation ,
• enforces the continuity of the normal component of b,
• involves j = σe and h = νb, (σ = ρ−1, ν = µ−1)
• much used in electric rotating machine design.

Nonlinear constitutive laws involved in opposite ways ⇒ very different numerical
behaviors are expected. . . and observed.
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Differential forms
We discretize the fields as differential k-forms. The exterior derivative d applied
on a k-form gives a k + 1-form:
• 0-form, H1, e.g. φ (scalar magnetic potential), v (scalar electric potential):

• continuous scalar fields (conform),
• generated by nodal functions ψn, value (point evaluation) at node ñ = δnñ,
• exterior derivative is grad .

• 1-form, H(curl), e.g. h, e, a (magnetic vector potential), t (electric vector
potential):
• vector fields with continuous tangential trace (curl-conform),
• generated by edge functions ψe, circulation (line integral) along edge ẽ

= δeẽ,
• exterior derivative is curl .

• 2-form, H(div), e.g. b, j:
• vector fields with continuous normal trace (div-conform),
• generated by facet functions ψf , flux (surface integral) through facet f̃

= δff̃ ,
• exterior derivative is div .
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Differential forms: illustration
Lowest order edge functions (1-form) for a triangular finite element:

u

v

(1− v u)T

(v 1− u)T (−v u)T

1

1

Edge 1

Edge 2 Edge 3

Their curl (2-form) are constant.
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Differential forms: Tonti diagram

• We can summarize it all on a Tonti diagram:

(φ, ω) gradh // h (t) curlh //
OO

b=µ(h)h

��

j
divh //

OO

e= ρ(j)j

��

0

0 oo dive
b oo

curle
e (a) oo grade (v)

• h-conform formulations (h, h-φ, t-ω, ...) satisfy the top exactly
• b-conform formulations (a, a-v, ...) satisfy the bottom exactly
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Derivation of the a-v-formulation
Introduce the vector potential a, and the electric potential v:

b = curl a, e = −∂ta− grad v.

Define a in Ω and v in Ωc (discontinuous across electrodes):
• a as a 1-form and v as a 0-form,
• satisfying the local BC (e− ē)× n|Γe = 0,
• and global BC Vi = V̄i for i ∈ CV (i.e. the circulation of −grad v around

conducting domain Ωci is equal to V̄i).
This strongly satisfies

div b = 0, curl e = −∂tb, (e− ē)× n|Γe = 0, Vi = V̄i for i ∈ CV .

What remains is:

curl h = j, j = σe, h = νb, (h− h̄)× n|Γh = 0, Ii = Īi for i ∈ CI .
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Choosing a and v

We still have freedom on the choice of a and v. Indeed, for any scalar field φ,
the substitution

a→ a+
∫ t

0
grad φ dt

v → v − φ

lets the physical solution, b and e, unchanged.

We present here one possibility for gauging a and v in:
(1) 2D case with in-plane b, (2) 3D case.

In both cases, one global shape function vd,i in each Ωci is sufficient for
representing a unit voltage in Ωci , s.t. we have:

grad v =
N∑
i=1

Vi grad vd,i.
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Choosing a and v, cont’d

b = curl a, e = −∂ta− grad v, grad v =
N∑
i=1

Vi grad vd,i

1. 2D with in-plane b:

• We choose a along ẑ,

a =
∑
n∈Ω

an ψnẑ,

with ψn the nodal function of node n.
NB: It is a Coulomb gauge, as div a = 0

• grad vd,i is along ẑ and constant (= 1) in each
Ωci . (V is a voltage per unit length.)

• Remaining constant fixed by BC.

Ωc,1

ΩC
c

Γh

n

I1, V1

I2, V2

Γe Ωc,2

ẑ

ŷ

x̂
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Life-HTS a in 2D, with in-plane b

a =
∑
n∈Ω

an ψnẑ,

FunctionSpace {
// Perpendicular edge functions (1- form field in the out -of - plane direction )
{ Name a_space_2D ; Type Form1P ;

BasisFunction {
{ Name psin; NameOfCoef an; Function BF_PerpendicularEdge ;

Support Omega_a_AndBnd ; Entity NodesOf [All ]; }
}
Constraint {

{ NameOfCoef an; EntityType NodesOf ; NameOfConstraint a; }
}

}
}
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Life-HTS grad v in 2D, with in-plane b

grad v =
N∑
i=1

Vi grad vd,i =
N∑
i=1

Vi ẑi

FunctionSpace {
{ Name grad_v_space_2D ; Type Form1P ;

BasisFunction {
// Constant per region and along z. Corresponds to a voltage per unit length
{ Name zi; NameOfCoef Vi; Function BF_RegionZ ;

Support Region [ OmegaC ]; Entity Region [ OmegaC ]; }
}
GlobalQuantity {

// Associated global quantities to be used in the formulation
{ Name V; Type AliasOf ; NameOfCoef Vi; }
{ Name I; Type AssociatedWith ; NameOfCoef Vi; }

}
Constraint {

{ NameOfCoef V; EntityType Region ; NameOfConstraint Voltage ; }
{ NameOfCoef I; EntityType Region ; NameOfConstraint Current ; }

}
}

}
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Choosing a and v
2. 3D:

• In Ωc, define vd,i to be zero everywhere except
on a transition layer in Ωci : layer of one
element, on one side of the electrodes, in each
Ωci (v has no longer a physical interpretation),

grad v =
N∑
i=1

Vi grad vd,i.

• a is generated by edge functions.

• In Ωc, a is unique, e.g. outside the transition
layer e = −∂ta (reduced vector potential).

• In ΩC
c , a is made unique with a co-tree

gauge. . .

vd,1 = 0

vd,1 = 1

vd,1 = 0
ΩC

c

Ωc,1
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Co-tree gauge for a in ΩC
c in 3D

• In ΩC
c , only curl a = b has a physical meaning. One degree of freedom

(DoF) per facet is sufficient (and necessary), instead of one DoF per edge.
• The support entities of the 1-form a are the edges.
• To associate a unique edge to each facet: consider only edges in a co-tree,

i.e. the complementary of a tree:

a =
∑

e∈Ωc∪(co-tree in ΩC
c )
ae ψe.

ae = 0

ΩC
cΩC

c

ae 6= 0

NB: Be careful on the conducting domain boundary ∂Ωc, no gauge there because a is already unique.
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Life-HTS a in 3D
a =

∑
e∈Ωc∪(co-tree in ΩC

c )
ae ψe

FunctionSpace {
{ Name a_space_3D ; Type Form1;

BasisFunction {
// Usual edge functions everywhere ( decomposed to handle BndOmegaC ) correctly
{ Name psie ; NameOfCoef ae ; Function BF_Edge ;

Support Omega_a_AndBnd ; Entity EdgesOf [ All , Not BndOmegaC ] ; }
{ Name psie2 ; NameOfCoef ae2 ; Function BF_Edge ;

Support Omega_a_AndBnd ; Entity EdgesOf [ BndOmegaC ] ; }
}
Constraint {

{ NameOfCoef ae; EntityType EdgesOf ; NameOfConstraint a; }
{ NameOfCoef ae2; EntityType EdgesOf ; NameOfConstraint a; }
{ NameOfCoef ae; EntityType EdgesOfTreeIn ; EntitySubType StartingOn ;

NameOfConstraint GaugeCondition ; }
}

}
}
Constraint {

{ Name GaugeCondition ; Type Assign ;
Case {

// Zero on edges of a tree in Omega_CC , containing a complete tree on Surf_a_noGauge
{ Region Omega_a_OmegaCC ; SubRegion Surf_a_noGauge ; Value 0.; }

}
}

}
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Life-HTS v in 3D

grad v =
N∑
i=1

Vi grad vd,i

FunctionSpace {
{ Name grad_v_space_3D ; Type Form1 ;

BasisFunction {
// Global unit voltage shape function . Support limited to only one side of the electrodes
{ Name vi; NameOfCoef Vi; Function BF_GradGroupOfNodes ;

Support ElementsOf [OmegaC , OnPositiveSideOf Electrodes ];
Entity GroupsOfNodesOf [ Electrodes ]; }

}
GlobalQuantity {

// Associated global quantities to be used in the formulation .
{ Name V; Type AliasOf ; NameOfCoef Vi; }
{ Name I; Type AssociatedWith ; NameOfCoef Vi; }

}
Constraint {

{ NameOfCoef V;
EntityType GroupsOfNodesOf ; NameOfConstraint Voltage ; }

{ NameOfCoef I;
EntityType GroupsOfNodesOf ; NameOfConstraint Current ; }

}
}

}
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Choosing a and v, other possibilities

Various alternatives can also be considered in 3D:
• Distributed support for v, via a preliminary FE resolution [S. Schöps, et al.,

COMPEL (2013)]

• Coulomb gauge in ΩC
c via a Lagrange multiplier [Creusé, et al., Computers &

Mathematics with Applications, 77(6), 1563-1582 (2019)]
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Derivation of the a-v-formulation , cont’d
What remains is:

︸ ︷︷ ︸
⇒ curl (ν curl a)=−σ (∂ta+grad v) ?©
curl h = j, j = σe,

�©︷ ︸︸ ︷
h = νb, (h− h̄)× n|Γh = 0, Ii = Īi for i ∈ CI︸ ︷︷ ︸

‡©

• Multiply ?© by a test function a′, in the same space than a but with
homogeneous BC, and integrate over Ω,

(curl (ν curl a) ,a′)Ω + (σ (∂ta+ grad v) ,a′)Ωc
= 0

⇒ (ν curl a , curl a′)Ω − (ν curl a× n︸ ︷︷ ︸
Neumann BC �©

, a′)Γh

+ (σ ∂ta ,a′)Ωc
+ (σ grad v ,a′)Ωc

= 0
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Derivation of the a-v-formulation , cont’d
What remains is:

︸ ︷︷ ︸
⇒ curl (ν curl a)=−σ (∂ta+grad v) ?©
curl h = j, j = σe,

�©︷ ︸︸ ︷
h = νb, (h− h̄)× n|Γh = 0, Ii = Īi for i ∈ CI︸ ︷︷ ︸

‡©

• Multiply ?© by a test function grad v′, and integrate over Ωc,

(curl (ν curl a) , grad v′)Ωc
+ (σ ∂ta , grad v′)Ωc

+ (σ grad v , grad v′)Ωc
= 0

⇒ − (ν curl a× n , grad v′)∂Ωc︸ ︷︷ ︸
‡©...

+ (σ ∂ta , grad v′)Ωc

+ (σ grad v , grad v′)Ωc
= 0
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Derivation of the a-v-formulation , cont’d
• The surface term simplifies

(ν curl a× n , grad v′)∂Ωc
= (h× n , grad v′)∂Ωc

= (h ,n× grad v′)∂Ωc

= (h ,n× grad v′)∂(transition layer)

= I V ′ = Ī V ′ (Ampère’s law + ‡©).

grad v′
n

Ī

ΩC
c

Ωc

n× grad v′
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a-v-formulation

Finally, the a-v-formulation amounts to find a and v in the chosen function
spaces such that, ∀a′ and v′,

(ν curl a , curl a′)Ω −
(
h̄× nΩ ,a′

)
Γh

+ (σ ∂ta ,a′)Ωc
+ (σ grad v ,a′)Ωc

= 0,

(σ ∂ta , grad v′)Ωc
+ (σ grad v , grad v′)Ωc

=
N∑
i=1

IiVi(v′),

with Ii = Īi for i ∈ CI , and Vi(v′) = V ′i (i.e. the DoF associated with the unit
voltage function vd,i).
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a-v-formulation – Interpretation
When the test function v′ = vd,i is chosen (Vi(vd,i) = 1), the second equation
reads

(σ (∂ta+ grad v) , grad vd,i)Ωc
= Ii

⇒ (σ e ,−grad vd,i)Ωc
= Ii.

“Flux of σe (= j) averaged over a transition layer = total current”.

vd,1 = 0

vd,1 = 1

vd,1 = 0
ΩC

c

Ωc,1

NB: The flux of σe depends on the chosen cross-section as σe is not a 2-form (as j
should be). Conservation of current is weakly satisfied.

47



Simple finite element formulations
The a-v-formulation
The h-φ-formulation

Resolution techniques
Time integration
Linearization methods
Comparison of the formulations

Mixed finite element formulations
The h(-φ)-a-formulation
The t-a-formulation

Illustrations

Summary

References



Derivation of the h-φ-formulation

Choose h such that
• it is a 1-form,
• (h− h̄)× n|Γh = 0,
• curl h = 0 in ΩC

c (this is the key point),
• and express j directly as j = curl h in Ωc, with h generated by edge

functions.

What are the functions h that satisfy curl h = 0 in ΩC
c ?

⇒ Surely gradients of scalar functions!
• If h = grad φ, then curl h = 0, ∀φ.
• However, choosing only h = grad φ does not

allow to represent a net current intensity
(necessary if ΩC

c is multiply connected).
• We need additional functions. . .

ΩC
c

Ωc∮
C(grad φ) · d` = 0

I

C
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Derivation of the h-φ-formulation , cont’d
• One global shape function ci for each Ωci is

enough for representing a unit current intensity
in Ωci .

• As with the a-v-formulation , we have freedom
on the choice of these functions. The only
constraint is that∮

Ci
cj · d` = δij.

ΩC
c

Ωc h = I
2πr θ̂

I

C

In ΩC
c , we therefore have

h = grad φ+
N∑
i=1

Ii ci.
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Choice of the global functions
One possibility for choosing the ci functions, the cut functions:
• Introduce cuts to make ΩC

c simply connected.
• Define the ci on transition layers: layer of one element on one side of the

cut, for each cut.
• ci = grad φd,i, with φd,i a discontinuous scalar potential.

ΩC
c

ẑ

ŷ

x̂

Ωc

ΩC
c

I

V

ẑ
ŷ
x̂

Ωc,1

Ωc,2 C
I1, V1

I2, V2

C1

C2

φd,1 = 0
φd,1 = 1

φd,1 = 0

NB: Gmsh has an automatic cohomology solver for generating cuts in
complicated geometries (e.g. helix windings)
[M. Pellikka, et al. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214 (2013)]
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Summary and shape function supports
In Ω we have

h =
∑
n∈ΩC

c

φn grad ψn +
∑

e∈Ωc\∂Ωc

he ψe +
N∑
i=1

Ii ci.

Gradient of node
functions.

Ωc

ΩC
c

h hh

h

h
h

h

Classical edge functions.

Ωc

ΩC
c

h h

j
j

Global cut function. Net
current 6= 0.

Ωc

ΩC
c

h

j

h

h h

Cut

Note: Gray areas = Ωc.
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Life-HTS h in 2D or 3D
h =

∑
n∈ΩC

c

φn grad ψn +
∑

e∈Ωc\∂Ωc

he ψe +
N∑
i=1

Ii ci.

FunctionSpace {
{ Name h_space ; Type Form1;

BasisFunction {
// Nodal functions
{ Name gradpsin ; NameOfCoef phin; Function BF_GradNode ;

Support Omega_h_OmegaCC_AndBnd ; Entity NodesOf [ OmegaCC ]; }
{ Name gradpsin ; NameOfCoef phin2; Function BF_GroupOfEdges ;

Support Omega_h_OmegaC ; Entity GroupsOfEdgesOnNodesOf [ BndOmegaC ]; }
// Edge functions
{ Name psie; NameOfCoef he; Function BF_Edge ;

Support Omega_h_OmegaC_AndBnd ; Entity EdgesOf [All , Not BndOmegaC ]; }
// Cut functions
{ Name ci; NameOfCoef Ii; Function BF_GradGroupOfNodes ;

Support ElementsOf [ Omega_h_OmegaCC , OnPositiveSideOf Cuts ];
Entity GroupsOfNodesOf [Cuts ]; }

{ Name ci; NameOfCoef Ii2; Function BF_GroupOfEdges ;
Support Omega_h_OmegaC_AndBnd ;
Entity GroupsOfEdgesOf [Cuts , InSupport TransitionLayerAndBndOmegaC ]; }

}
GlobalQuantity {

{ Name I ; Type AliasOf ; NameOfCoef Ii ; }
{ Name V ; Type AssociatedWith ; NameOfCoef Ii ; }

}
Constraint {

{ [...] }
{ [...] }

} } }
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Dealing with global variables, alternatives

Other possibilities can also be considered:
• Winding functions

[S. Schöps, et al. COMPEL (2013)]

• Large resistivity (≈ 1 Ωm) in ΩC
c and integral constraint on the current

(simple but much more DoF), leading to a full h-formulation
[Shen, B., et al., IEEE access, 8 (2020) 100403-100414]
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Derivation of the h-φ-formulation , cont’d
With the chosen h, we strongly satisfy

curl h = j, (h− h̄)× n|Γh = 0, Ii = Īi for i ∈ CI .

What remains is:

div b = 0, curl e = −∂tb, e = ρ j, b = µh,

(e− ē)× n|Γe = 0, Vi = V̄i for i ∈ CV .

We model an external applied voltage V by a
localized ea field in a modified Ohm’s law:

e = ea + ρ j,

with ea = V δ(ξ − ξΣ)n so that we globally
have a net E.M.F. (δ(·) is the Dirac distribution)

ea

n
ΩC

c

Ωc
Σ

ξΣ
ξ

I

55



Derivation of the h-φ-formulation , cont’d
With the chosen h, we strongly satisfy

curl h = j, (h− h̄)× n|Γh = 0, Ii = Īi for i ∈ CI .
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ξΣ
ξ

I

55



Derivation of the h-φ-formulation , cont’d
What remains is:

div b = 0,
⇒ curl (ρ curl h)+curl ea=−∂t(µh) ?©︷ ︸︸ ︷

curl e = −∂tb, e = ea + ρ j, b = µh,

(e− ē)× n|Γe = 0︸ ︷︷ ︸
�©

, Vi = V̄i for i ∈ CV︸ ︷︷ ︸
‡©

.

• Multiply ?© by a test function h′, in the same space than h but with
homogeneous BC, and integrate over Ω,

(∂t(µh) ,h′)Ω + (curl (ρ curl h) ,h′)Ω + (curl ea ,h
′)Ω = 0,

⇒ (∂t(µh) ,h′)Ω + (ρ curl h , curl h′)Ωc
+ (ea , curl h′)Ωc︸ ︷︷ ︸

‡©...

− (e (ea + ρ curl h)× n︸ ︷︷ ︸
Neumann BC �©

, h′)Γe = 0
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Derivation of the h-φ-formulation , cont’d
• The third term simplifies

(ea , curl h′)Ωc
= V (δ(ξ − ξΣ)n , curl h′)Ωc

= V (n , curl h′)Σ

= V
∮
∂Σ
h′ · d`

= V I ′ = V̄ I ′ (Ampère’s law + ‡©).

ea

n
ΩC

c

Ωc
Σ

ξΣ
ξ

I
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Derivation of the h-φ-formulation , cont’d

What about div b = 0?
• Taking h′ = grad φ′ in the formulation yields

(∂t(µh) , grad φ′)Ω + (curl (ea + ρ curl h) , grad φ′)Ω = 0,
⇒− (div (∂t(µh)) , φ′)Ω + (∂t(µh) · n , φ′)Γe

− (ē× n , grad φ′)Γe = 0.

One can show that (∂t(µh) · n , φ′)Γe = (e× n , grad φ′)Γe , so with
(e− ē)× n|Γe = 0, what remains is

∂t

(
(div (µh) , φ′)Ω

)
= 0,

such that div b = 0 is (weakly) verified if the initial condition ht0 is such
that (div (µht0) , φ′)Ω = 0.
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h-φ-formulation

Finally, the h-φ-formulation amounts to find h in the chosen function space
such that, ∀h′,

(∂t(µh) ,h′)Ω + (ρ curl h , curl h′)Ωc

− (ē× n ,h′)Γe +
N∑
i=1

ViIi(h′) = 0,

with Vi = V̄i for i ∈ CV , and Ii(h′) = I ′i (i.e. the DoF associated with the cut
function ci).
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h-φ-formulation – Interpretation
When the test function ci (Ii(ci) = 1) is chosen, we get the equation:

(∂t(µh) , ci)Ω + (ρ curl h , curl ci)Ωc
= −Vi.

“Flux change µh (= b) + circulation of ρ j (= e),
both averaged over a transition layer = total voltage”.

ΩC
c

ẑ

ŷ

x̂

Ωc

ΩC
c

I

V

ẑ
ŷ
x̂

Ωc,1
I1, V1

φd,1 = 0
φd,1 = 1

φd,1 = 0

NB: The flux of µh depends on the chosen cut as µh is not a 2-form (as b should be).
Same for ρ j.
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Structure of the resolution

• After spatial discretization, we obtain a system of time-dependent, nonlinear
ordinary differential equations of the form

K(x, t) ẋ(t) +M(x, t)x(t) = b(t)

• Resolution: two imbricated loops
• Time-stepping: Implicit Euler with adaptive time steps tn
• Iterative solution of the nonlinear system at each time step tn:

Newton-Raphson or fixed point (Picard)
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Implicit Euler
Time derivatives at time step tn are expressed as:

dx

dt
(tn) = x(tn)− x(tn−1)

∆t ,

with x(tn) containing the DoFs and u(tn−1) being known from the initial
conditions (first step) or from the previous step.
At each step tn we end up with a system of nonlinear equations of the form

A(x(tn))x(tn) = b(tn)

Other possibilities can be implemented:
• Explicit Euler,
• Crank-Nicholson,
• Higher-order schemes (e.g. BDF). . .

⇒ In Life-HTS we just explicitly write the scheme in the GetDP formulation.

64



Implicit Euler
Time derivatives at time step tn are expressed as:

dx

dt
(tn) = x(tn)− x(tn−1)

∆t ,

with x(tn) containing the DoFs and u(tn−1) being known from the initial
conditions (first step) or from the previous step.
At each step tn we end up with a system of nonlinear equations of the form

A(x(tn))x(tn) = b(tn)

Other possibilities can be implemented:
• Explicit Euler,
• Crank-Nicholson,
• Higher-order schemes (e.g. BDF). . .

⇒ In Life-HTS we just explicitly write the scheme in the GetDP formulation.
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Life-HTS implicit Euler in formulation
Example: flux variation term (∂t(µh) ,h′)Ω in h-φ-formulation(

µhn
∆t ,h′

)
Ω
−
(
µhn−1

∆t ,h′
)

Ω
Formulation {

{ Name MagDyn_htot ; Type FemEquation ;
Quantity {

{ Name h; Type Local; NameOfSpace h_space ; }
{ [...] }

}
Equation {

// Flux variation term (on the linear magnetic domain )
Galerkin { [ mu[] * Dof{h} / $DTime , {h} ];

In MagnLinDomain ; Integration Int; Jacobian Vol; }
Galerkin { [ - mu[] * {h}[1] / $DTime , {h} ];

In MagnLinDomain ; Integration Int; Jacobian Vol; }
[...]

} } }

Syntax:
• Dof{h}: DoF at the current time step n (and iteration),
• {h}[i]: saved/known solution of h at time step n− i,
• {h}: solution at the previous iteration (see later).
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Adaptive time-stepping

Parameters:
• γ = 1/2
• β = 2
• ifast = imax/4
• Fixed-point: imax = 400
• Newton-Raphson
imax = 50
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Life-HTS time-stepping in resolution
Resolution {

{ Name MagDyn ;
System { {Name A; NameOfFormulation MagDyn_htot ;} }
Operation {

[...]
// Initialize }
SetTime [ timeStart ]; SetDTime [ dt ]; SetTimeStep [ 0 ];
// Time loop
While[$Time < timeFinalSimu && $DTime > 1e -10]{

SetTime [ $Time + $DTime ]; SetTimeStep [ $TimeStep + 1 ];
// Customized iterative loop
Call CustomIterativeLoop ;

// If converged (= less than iter max and not diverged )...
Test[ $iter < iter_max && ($res / $res0 <= 1e10 )]{

SaveSolution [A];
Test[ $iter < iter_max / 2 && $DTime < dt_max ]{

Evaluate [ $dt_new = Min[ $DTime * 2, dt_max ] ];
SetDTime [ $dt_new ];

}
}
// ... otherwise , decrease the time step and start again
{

RemoveLastSolution [A];
Evaluate [ $dt_new = $DTime / 2 ];
SetDTime [ $dt_new ];
SetTime [$Time - $DTime ]; SetTimeStep [ $TimeStep - 1];

}
}

}
}

}
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Solving a nonlinear equation: f (x) = b

1. Picard iteration method (a fixed point method):

xi xi+2 xi+1

b

f(x) = A(x)x

A(xi)xA(xi+1)x

x

f
(x
)

• Write f(x) as f(x) = A(x)x.

• Get a first estimate x0.

• At each iteration i:
• solve A(xi−1)x = b,
• xi := x,
• i := i+ 1 and loop.

• Stop when convergence criterion is
met.

• May converge for wide range of first estimates x0.
• Convergence is slow!
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Solving a nonlinear equation: f (x) = b
2. Newton-Raphson iterative method:

xi xi+2 xi+1

b

f(x) = A(x)x

x

f
(x
)

• Get a first estimate x0.

• At each iteration i, solve for xi:

df

dx
(xi−1) (xi − xi−1) = f(xi−1).

• Stop when convergence criterion is
met.

• Quadratic convergence, if the initial est. x0 is close enough.
• Relaxation factors can also be implemented.
• If x is a vector, df

dx is a matrix (Jacobian matrix). . .
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Jacobian for isotropic constitutive laws
• Consider a constitutive law of the form

a(x) = g(‖x‖)x.
Example: e = ρ j, or b = µh, . . .

• The Newton-Raphson expansion can be cast in the form

a(xi) ≈ a(xi−1) + J(xi−1) ·
(
xi − xi−1

)
,

where J is the Jacobian matrix (i is the iteration index):

(J(x))jk = ∂aj
∂xk

= δjk g(‖x‖) + xjxk

dg(‖x‖)
d‖x‖

‖x‖
.

• Example: (ρ curl h , curl h′)Ωc
in h-φ-formulation , with curl h = j:

(
ρ(ji−1) ji−1 , curl h′

)
Ωc

+
(
∂e

∂j
(ji−1) ji , curl h′

)
Ωc

−
(
∂e

∂j
(ji−1) ji−1 , curl h′

)
Ωc

Worked-out Jacobians in [J. Dular et al. TAS 30 8200113 (2020)]
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Life-HTS Picard and Newton-Raphson
in formulation

Example: nonlinear term (ρ curl h , curl h′)Ωc
in h-φ-formulation

N-R:
(
ρ(ji−1) ji−1 , curl h′

)
Ωc

+
(
∂e

∂j
(ji−1) ji , curl h′

)
Ωc

−
(
∂e

∂j
(ji−1) ji−1 , curl h′

)
Ωc

Formulation {
{ Name MagDyn_htot ; Type FemEquation ;

Quantity {
{ Name h; Type Local; NameOfSpace h_space ; }
{ [...] }

}
Equation {

// (1) Picard
Galerkin { [ rho [{d h}]] * Dof{d h} , {d h} ];

In NonLinOmegaC ; Integration Int; Jacobian Vol; }

// (2) Newton - Raphson }
Galerkin { [ rho [{d h}] * {d h} , {d h} ];

In NonLinOmegaC ; Integration Int; Jacobian Vol; }
Galerkin { [ dedj [{d h}] * Dof{d h} , {d h} ];

In NonLinOmegaC ; Integration Int; Jacobian Vol; }
Galerkin { [ - dedj [{d h}] * {d h} , {d h} ];

In NonLinOmegaC ; Integration Int; Jacobian Vol; }
[...]

} } }
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Choosing the first estimate
• We use polynomial extrapolation:

t

x(t)

t

x(t)

t

x(t)

(a) Zeroth-order extrapolation (b) First-order extrapolation (c) Second-order extrapolation

• It can significantly affect the required number of iterations
• Best results:

• 1st order for the h-φ-formulation
• 2nd order for the a-v-formulation

In the resolution: SetExtrapolationOrder[ n ]; (n ∈ N)
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Convergence criterion
• The residual b−A(xi)xi can be misleading
• In practice we usually choose the electromagnetic power, P , as a (global)

convergence indicator:
h-φ-formulation

P = (∂t(µh) ,h)Ω + (ρ curl h , curl h)Ωc

a-v-formulation

P = (∂t(curl a) , ν curl a)Ω + (σe , e)Ωc

with e = −∂ta− grad v

• We stop when |∆P/P | is small enough:
• ≈ 10−8 with Newton-Raphson
• ≈ 10−4 with Picard
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To fix ideas: a superconducting ring
Consider a superconducting ring
subjected to a time-varying flux, Φ̇. The
ring is modelled as a non-linear lump
resistor with

R(|I|) = Vc
Ic

(
|I|
Ic

)n−1

,

where Vc and Ic are characteristic
voltage and current, and n is a critical
index.

The circuit equation
Φ̇ = R(|I|) I + Lİ

can be solved in one of two ways!
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Ring, 1st way: solve for the current I
• Discretize in time: tj = j∆t, j = 0, 1, 2, . . .,
• Consider the implicit Euler method with İ ≈ (Ij − Ij−1)/∆t,

Φ̇ = R(|I|) I + Lİ → Φ̇j = Vc
|Ij|n−1 Ij

Inc
+ L

Ij − Ij−1

∆t .

• Make this adimensional by introducing x = aIj/Ic, to obtain

b = |x|n−1 x+ x, (I-form),

where

a =
(
Vc∆t
LIc

)1/(n−1)

and b = Φ̇j + LIj−1/∆t
aLIc/∆t

.
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Ring, 2nd way: solve for the
voltage drop across R

• Solve now in terms of Vj = RIj,

Φ̇ = R(|I|) I + Lİ → Φ̇j = Vj + L
Ic |Vj/Vc|1/n−1 Vj/Vc − Ij−1

∆t .

• Make this adimensional with x = cVj/Vc, to get

d = |x|1/n−1 x+ x, (V -form),

where

c =
(

∆t
LIc

)n/(n−1)

and d = Φ̇j

c
+ LIj−1

c∆t .
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Ring example, summary

In each case, need to solve an equation of the form f(x) = constant:

f(x) = |x|n−1 x+ x

x

f(x)

I-form
∼ h-conform (Ampère)

f(x) = |x|1/n−1 x+ x

x

f(x)

V -form
∼ b-conform (Faraday)
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Nonlinearity in HTS for complementary
formulations

f(x) = |x|n−1x+ x

x

f(x)

h-φ-formulation (e = ρ j)

f(x) = |x|1/n−1x+ x

x

f(x)

a-v-formulation (j = σe)

Different nonlinearities ⇒ different numerical behaviors
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Warning!
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Beware of cycles
Cycles can occur in each method, depending on the shape of the function f(x):

x

f(x)
b

Picard iteration on
h-φ-formulation

Prefer Newton-Raphson!

x

f(x)
b

Newton-Raphson iteration on
a-v-formulation
Prefer Picard!

Relaxation factors can help, but no efficient solution (that we know of)
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Illustration for a superconducting cube
System
µ0hs Side a = 10 mm.

µ0hs = ẑ B0 sin(2πft),
with B0 = 200 mT,
f = 50 Hz,
jc = 108 A/m2 and
n = 100.

1.07× 108
‖j‖ (A/m2)h-form. a-form.

z

0

Residual
• L2 norm of r = Ax− b
• Left: h-φ-formulation

• Right: a-v-formulation

⇒ Much more efficient with Newton-Raphson (as is expected!)
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Hands-on: h-φ- and a-v-formulation

Magnetization of a superconducting pellet: phenomenology

Magnetize a cylindrical pellet of aspect ratio 0.5 (height/diameter) in an axial
field of maximum 0.6 × the penetration field:

E. H. Brandt, PRB 58 (1998)
6506
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Hands-on: h-φ- and a-v-formulation
Magnetization of a superconducting pellet: h-φ-formulation and a-v-formulation

models/Life-HTS/cylinder/cylinder.pro
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Conclusion for HTS

The diverging slope associated with j = σe for j → 0 is really difficult to handle.

⇒ Among the two simple formulations, the h-φ-formulation is much more
efficient for systems with HTS:
• with an adaptive time-stepping algorithm,
• solved with a Newton-Raphson method,
• with a first estimate obtained by 1st-order extrapolation.
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One particular case: “single time step”
• For large values of n, nearly a critical state model.
• Robustness of Picard on the j = σe law can help to reduce the number of

time steps.
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a-formulation

h-formulation

• Here, for a magnetization cycle (3D cube problem)
• lines: h-φ-formulation with 300 time steps,
• dots: a-v-formulation with 20 time steps ⇒ much faster!

• In practice, accurate for j and b, but e is underestimated
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Ferromagnetic materials
The nonlinearity is in the magnetic constitutive law.
• h-φ-formulation the involved law is b = µh.

µ σ≈

⇒ Easily enters cycles with Newton-Raphson.
OK with Picard, or N-R with relaxation factors but slow.

• a-v-formulation the involved law is h = νb.

ν ρ≈

⇒ Efficiently solved with Newton-Raphson.

The a-v-formulation is more appropriate for dealing with the nonlinearity,
whereas for HTS, the complementary formulation was best.
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Coupled materials – h(-φ)-a-formulation

Use the best formulation in each material
Decompose the domain Ω, for example into:
• Ωh = {HTS}
• Ωa = {Ferromagnet,Air}

and couple via Γm = ∂(HTS):

HTS
FM

Air

(
∂t(µh) ,h′

)
Ωh

+
(
ρ curl h , curl h′

)
Ωhc

+ (∂ta× nΩh ,h
′)Γm

= 0,

(ν curl a , curl a′)Ωa − (h× nΩa ,a
′)Γm

= 0.

(For homogeneous Neumann BC)
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h(-φ)-a-formulation results

Example:
• Stacked cylinders
• 2D axisymmetric
• External applied field

Ferromagnet

Superconductor

hext

t

Number of iterations for three discretization levels:

h-φ-formulation a-v-formulation h(-φ)-a-formulation
Coarse 1878 4381 1071

Medium 3366 7539 1931
Fine 4422 14594 3753

In general, a speed-up from 1.2 to 3 is obtained.
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h(-φ)-a-formulation stability
The formulation is mixed (two unknown fields on Γm)
⇒ Shape functions must satisfy an inf-sup condition.

• First-order functions for h and a (inf-sup KO)

HTS

Ferromagnet

• Second-order for a, first-order for h (inf-sup OK)

HTS

Ferromagnet

93



Life-HTS Hierarchical functions
Example for 2nd-order shape functions for a (in 2D) on Γm:
FunctionSpace {

{ Name a_space_2D ; Type Form1P ;
BasisFunction {

// Usual first -order functions
{ Name psin; NameOfCoef an; Function BF_PerpendicularEdge ;

Support Omega_a_AndBnd ; Entity NodesOf [All ]; }
// Second -order functions on BndOmega_ha only
{ Name psin2; NameOfCoef an2; Function BF_PerpendicularEdge_2E ;

Support Omega_a_AndBnd ; Entity EdgesOf [ BndOmega_ha ]; }
}
Constraint {

{ NameOfCoef an; EntityType NodesOf ; NameOfConstraint a; }
{ NameOfCoef an2; EntityType EdgesOf ; NameOfConstraint a2; }

}
}

}

ψn ψn2

NB: This is for a locally enriched function space. Using 2nd-order elements on the whole
domain can be done directly at the meshing step (using e.g. gmsh -order 2).
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HTS tapes - t-a-formulation
To model thin superconducting tapes, two main possibilities:

1. Use the true geometry and the h-φ-formulation with one-element across
the thickness (quadrangle):

2. Perform the slab approximation and model the tape as a line ⇒
t-a-formulation :
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t-a-formulation

Consider a tape Γw of thickness w.
The current density is described by a current
potential t:
• such that j = curl t,
• gauged by being defined along the normal

of the tape, t = tn,
• with BC related to the total current I

(t+ − t− = I/w).

Γw

Ωa

I

V

n

t− = 0

t+ = I/w

In Ωa, write the a-v-formulation and express the surface integral
(h× n ,a′)Γw in terms of the surface current density w curl t.
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t-a-formulation

Find a and t in the chosen function spaces such that, ∀a′, t′:

(ν curl a , curl a′)Ωa −
(
h̄× nΩ ,a′

)
Γh
− (w curl t ,a′)Γw = 0,

(w ∂ta , curl t′)Γw + (w ρ curl t , curl t′)Γw = −
∑
i∈C

ViIi(t′),

with Vi = V̄i for i ∈ CV , and Ii(t′) = I ′i (i.e. the DoF associated with the BC
w(t+ − t−)).

It is basically an h(-φ)-a-formulation with a slab approximation

⇒ More information and applications in F. Grilli’s lecture tomorrow

See also [Bortot, L., et al., IEEE TAS 30(5), 1-11 (2020)]

98



t-a-formulation - Stability

The t-a-formulation is mixed (two unknown fields on Γw)
⇒ Shape functions must satisfy an inf-sup condition

Similar conclusions than with the h(-φ)-a-formulation

Example for a 2D case, current density along the tape:
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Life-HTS function space for t

Defined as a scalar quantity in the FunctionSpace, the normal n is introduced
in the formulation:

t =
∑

n∈Γw\∂Γw
tnψn +

N∑
i=1

Ti`i, with t = tn.

FunctionSpace {
{ Name t_space ; Type Form0 ;

BasisFunction {
// Node functions except on the lateral edges of the tapes
{ Name psin; NameOfCoef tn; Function BF_Node ;

Support Gamma_w ; Entity NodesOf [All , Not LateralEdges ]; }
// Global shape function for representing a net current intensity
{ Name elli; NameOfCoef Ti; Function BF_GroupOfNodes ;

Support Gamma_w_AndBnd ; Entity GroupsOfNodesOf [ PositiveEdges ]; }
}
GlobalQuantity {

// Global quantities to be used in the formulation
{ Name T ; Type AliasOf ; NameOfCoef Ti ; }
{ Name V ; Type AssociatedWith ; NameOfCoef Ti ; }

}
Constraint {

{ NameOfCoef V; EntityType GroupsOfNodesOf ; NameOfConstraint Voltage ; }
{ NameOfCoef T; EntityType GroupsOfNodesOf ; NameOfConstraint Current_w ; }

}
}

}
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Hands-on: 3D HTS magnet motor pole

Air

HTS bulk
Coil

Iron

One eight of the geometry
(air domain not shown)

models/Life-HTS/magnet/magnet.pro
TABLE I: Description of the different formulations

NL laws Function space Number of DOFs � 6= 0 in ⌦C
c ?

h ⇢, µ h 2 H(⌦) = {h 2 H(⌦)} Edges in ⌦ Yes
h-� ⇢, µ h 2 H�(⌦) = {h 2 H(⌦) | curl h = 0 in ⌦C

c } Edges in ⌦c + Nodes in ⌦C
c No

ā �, ⌫ a 2 Ā(⌦) = {a 2 H(⌦)} Edges in ⌦ (Yes)⇤

a �, ⌫ a 2 A(⌦) = {a 2 H(⌦) | co-tree gauge in ⌦C
c } Edges in ⌦c + Facets in ⌦C

c No
h-a ⇢, ⌫ h 2 H�(⌦c), a 2 A(⌦C

c ) Edges in ⌦c + Facets† in ⌦C
c No

h-�-a ⇢, ⌫ h 2 H�(⌦C
m), a 2 A(⌦m) Edges in ⌦h,c + Nodes† in ⌦C

h,c + Facets in ⌦m No
h-�-b ⇢, ⌫ h 2 H�(⌦), b 2 (H3(⌦m))3 Edges in ⌦c + Nodes in ⌦C

c + Volumes (⇥3) in ⌦m No
a-j ⇢, ⌫ a 2 A(⌦), j 2 A(⌦c) Edges (⇥2) in ⌦c + Facets in ⌦C

c No

NL stands for nonlinear. H(⌦) is the finite dimensional subset of the curl-conform space H(curl; ⌦) generated by Whitney edge elements on the mesh in ⌦
[5]. (H3(⌦m))3 is the space of piecewise constant vector functions (3 components) per element in ⌦m. ⇤For the ā-formulation, choosing � = 0 in ⌦C

c makes
the system singular, but this is not necessarily an issue as some linear solvers do not require uniqueness of the solution. †For surface-coupled formulations, a
local enrichment is necessary on �m to guarantee stability [6]. In 3D, this adds twice the number of facets on �m as DOFs (to enrich A, our choice for the
h-a-formulation), or once the number of edges on �m (to enrich H�, our choice for the h-�-a-formulation).

in a robust manner. To introduce the reluctivity ⌫ instead, the
formulation can be modified as follows: find h and b such that
�
@tb , h0�

⌦m
+
�
µ0@th , h0�

⌦C
m

+
�
⇢ curl h , curl h0�

⌦c
= 0

�
⌫b , b0�

⌦m
�
�
h , b0�

⌦m
= 0 (7)

holds for all h0 and b0, where the auxiliary flux density b
is only defined in ⌦m to minimize the additional DOFs. The
function space for b is chosen to be piecewise constant per
volume element. We refer to this formulation as the h-�-b-
formulation.

The analogous approach starting from the a-formulation
consists in introducing j as an auxiliary field and solve the
following mixed problem, so as to involve the resistivity ⇢:
find a and j such that

(⌫ curl a , curl a0)⌦ � (j , a0)⌦c
= (js , a0)⌦s�

⇢j , j0�
⌦c

+
�
@ta , j0�

⌦c
= 0

(8)

holds for all a0 and j0, with j defined in the same space than
a in ⌦c. This formulation is close to the a-v-j-formulation
proposed in [11] for 2D problems. Here, because the problem
does not involve a scalar electric potential, we refer to this
formulation as the a-j-formulation.

IV. COMPARISON ON THE 3D PROBLEM

We implemented the eight formulations in GetDP [12].
Model files are available at www.life-hts.uliege.be. Models
were run on one 2.9 GHz AMD Epyc Rome 7542 CPU.

A. Implementation Details

Formulations are integrated over time with 128 time steps.
Linear systems are solved with the direct sparse solver
MUMPS. An iterative Newton-Raphson method is used for
⇢ and ⌫. For � and µ, we were only able to obtain a
robust method by using Picard fixed point iterations. Even
though the use of relaxation factors on the Newton-Rapshon
iterations sometimes help, we have not found a robust set
of numerical parameters allowing convergence in all cases.
Iterations typically enter cycles that are difficult to avoid [2].

The convergence criterion is based on the instantaneous
power P = (@tb , h)⌦ + (j , e)⌦c

. Iterations stop when the
relative change of P is smaller than 10�6 (or 10�5 in case of
fixed point iterations) in each of the sub-domains.

For the h-formulation, the spurious resistivity in air is fixed
to ⇢s = 10�3 ⌦m. For the ā-formulation, �s = 1 S/m. With
these values, we have not observed any significant impact of
the spurious parameters on the numerical solution quality.

B. Results

We simulate the problem with the eight formulations on the
same mesh. Global and local solutions agree with each other.
The total hysteresis loss in the bulk is given in Table II, the
difference between the values is at most 1%. The norm of b
along the dashed line of Fig. 1 is represented in Fig. 3 for the
a- and h-�-formulations. All other formulations yield results
that are visually indistinguishable from these two formulations.
Results also match inside the HTS and FM. The current density
in the HTS is represented in Fig. 4.
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Fig. 3: Norm of the magnetic flux density at " = 2 mm above the system,
along the dashed line represented in Fig. 1. The upper plot is at t = 0.25 T
and the lower plot at t = 3.5 T . Curves from h-, h-�-a-, h-�-b-formulations
are indistinguishable from that of the h-formulation (h-conform field in air).
The same is true for curves from ā-, h-a-, a-j-formulations in comparison
with those from the a-formulation (b-conform field in air).

A good accuracy can be achieved with all formulations.
However, the computational cost associated with each of them
is not equivalent, see Table II. First, the number of DOFs
is strongly affected by the choice of function spaces. When
possible, is it always preferable to introduce a magnetic scalar
potential � and to gauge the magnetic vector potential a in
⌦C

c . Also, using � in air instead of a in surface-coupled
formulations leads to fewer DOFs.
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Hands-on: 3D HTS magnet motor pole
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Current density in the bulk
during magnetizing pulse
and relaxation

[J. Dular et al. IEEE Trans.
Mag. (2022)]
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Fig. 4: Current density from the h-�-a-formulation in the bulk during the
magnetizing pulse: (a)-(b) at t = 0.25 T , and (c)-(d) during relaxation at
t = 3.5 T . (a)-(c) x-component jx in the bulk, and (b)-(d) full vector j in
three planes.

TABLE II: Comparison of the different formulations

HTS loss (J) # DOFs # iterations Time/it. Total time
h 6.35 35,532 4,057 3.3s 3h42
h-� 6.36 12,172 3,937 1.4s 1h33
ā 6.38 29,010 2,955 3.1s 2h33
a 6.39 26,964 3,147 2.1s 1h48
h-a 6.31 32,045 1,124 2.7s 0h50
h-�-a 6.33 15,776 1,108 2.1s 0h39
h-�-b 6.37 20,821 1,104 3.2s 0h58
a-j 6.34 36,019 2,225 3.6s 2h15

Performance figures for the 128 time steps of the eight formulations with
linear elements (except on the coupling boundary for coupled formulations
where second order elements are used). HTS loss is the total hysteresis loss in
the HTS bulk from t = 0 to t = 10 T . Results differ by maximum 1%. Picard
fixed point iterations were used for the first four formulations, which explains
the large associated number of iterations. With more efficient method such as
Newton-Raphson iterations (with or without relaxation factors), we have not
obtained robust behaviors.

Second, the number of iterations required to reach conver-
gence strongly depends on the involved nonlinear laws. For
the h- and h-�-formulations, the large number of iterations is
due to the fixed point iterations on the permeability of the FM.
We observed that in some cases, a Newton-Raphson scheme
(with or without relaxation factors) applied on the permeability
works without difficulty with a CPU time similar to that of
coupled formulations, but this is not guaranteed in general.
By contrast, for the ā- and a-formulations, the conductivity in
HTS is significantly more difficult to handle. We only obtained
convergence with a fixed point method.

For the coupled formulations, in surface and in volume, the
number of iterations is directly reduced thanks to the use of
the Newton-Raphson method on ⇢ and ⌫, without needing any
parameter tuning.

Surface-coupled formulations appear to be the most efficient
choices, especially the h-�-a. Volume-coupled formulations
introduce more DOFs but may possibly be simpler to imple-
ment. Note that for modeling homogenized HTS-FM hybrids,
e.g., stack of tapes, the volume coupling approach could be a
convenient choice.

Interestingly, the CPU time per iteration does not scale
directly with the number of DOFs. The matrix structures
associated with the formulations are different and this also

influences the linear solver resolution. Further investigations
would provide a better understanding of this numerical behav-
ior.

V. CONCLUSION

In this work, we compared the relevance of several finite
element formulations for modeling 3D systems with high-
temperature superconductors and ferromagnetic materials. To
deal with the associated nonlinearities, the most efficient choice
in terms of CPU time was a coupled h-�-a-formulation with
surface coupling. While ensuring accurate results, this formula-
tion combines a good robustness and a low number of degrees
of freedom, thus leading to efficient simulations.
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de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under
Grant No. 2.5020.11. J. Dular is a research fellow funded by
the F.R.S-FNRS.

REFERENCES

[1] F. Grilli, R. Brambilla, F. Sirois, A. Stenvall, and S. Memiaghe,
“Development of a three-dimensional finite-element model for high-
temperature superconductors based on the h-formulation,” Cryogenics,
vol. 53, pp. 142–147, 2013.

[2] J. Dular, C. Geuzaine, and B. Vanderheyden, “Finite-element formula-
tions for systems with high-temperature superconductors,” IEEE Trans-
actions on Applied Superconductivity, vol. 30, no. 3, pp. 1–13, 2019.

[3] K. Berger, J. Kapek, A. Colle, M. Stepien, B. Grzesik, T. Lubin, and
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Improving HTS magnetic shields with a
soft ferromagnetic material

Shielding an axial field
with a HTS tube

Shielding with an additional
ferromagnetic tube

[Lousberg et al., TAS (2010)]
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Protecting a bulk HTS against crossed-
field demagnetisation with a ferromagnetic layer
Sequence of applied fields

Current distribution in the bulk with a
ferromagnetic top layer (µr = 10, 100)

[Fagnard et al., SUST (2016)]
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Magnetic shielding
in inhomogeneous fields

[Hogan et al., SUST (2018)]
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Magnetic shielding,
bulk superconducting cylinders and caps

Induced currents vs. geometries
Tracking stray fields in composite shields

FULL
CAP FUSED

+
TUBE

[Fagnard et al., SUST (2019)]
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Critical states in stacked Niobium films

Peculiar patterns of discontinuity lines in
stacks of Nb films

L = 200 µm, d = t = 300 nm

Needs to include a genuine
Jc(B)-dependence

Raising field stage

Decreasing field stage

[Burger et al., SUST (2019)]
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Critical states in the presence of a
ratchet pinning potential

Experiment: rotation of the central
discontinuity line in the decreasing

field stage, after magnetization

y

easy

hard

U(y)
force = -dU/dy

Model: an anisotropic pinning force
reproduces the result

µ0Ha = 3.11 mT µ0Ha = 1 mT

µ0Ha = 0.75 mT µ0Ha = 0 mT

[Motta et al., Phys. Rev. B (2022)]
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Rotating HTS motor

IronIron

HTS

A+

B−

C+

A−

B+

C−

Rotor

Stator

[HTS motors School (2020)]

Pulse magnetization (h-a-formulation)
IB± (t) = −IC± (t) = ± Imax tτ exp (1 − t/τ), IA± (t) = 0
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2D axisymmetric model of
moving bulk superconductors

2D axisymmetric model of moving bulk superconductors

Comparison between the model predictions and the experimental
measurements:

[M. Houbart et al., SUST (in press)]
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Coil of HTS Tapes
h-a formulation with thermal coupling; tapes in parallel, series or end-coupled
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Good agreement with reference results from COMSOL
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Summary

• Overview of finite element formulations for high-temperature
superconductors
• “Simple” formulations: h-φ-formulation , a-v-formulation

• Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of
nonlinear constitutive law

• For pure HTS problems, use h-φ-formulation with Newton-Raphson
• Adaptive time-stepping a must

• Mixed formulations: h(-φ)-a-formulation , t-a-formulation
• Useful for hybrid systems with ferromagnetic materials
• Should be discretized with caution to ensure well-posedness

• All formulations available in open source Life-HTS toolkit, based on
ONELAB, Gmsh and GetDP
• Several available or finding their way into commercial tools (e.g. COMSOL)
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Main references

• ONELAB website, with codes, examples, and tutorials: https://onelab.info

• Life-HTS website: http://www.life-hts.uliege.be

• Finite Element Formulations for Systems with High-Temperature Superconductors,
J. Dular, C. Geuzaine, and B. Vanderheyden, TAS 30 (2020) 8200113.

• On the Stability of Mixed Finite-Element Formulations for High-Temperature
Superconductors,
J. Dular, M. Harutyunyan, L. Bortot, S. Schöps, B. Vanderheyden, and C. Geuzaine, TAS
31 (2021) 8200412

• What Formulation Should One Choose for Modeling a 3D HTS Motor Pole with
Ferromagnetic Materials?,
J. Dular, K. Berger, C. Geuzaine, and B. Vanderheyden, IEEE Trans. Mag. (in press)
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Post-Scriptum

For fun, go to the
• Google Play Store (if you are on Android)
• Apple AppStore (if you are on iOS)

and download the ONELAB app: it contains a full-featured
version of Gmsh & GetDP
... so you can impress your friends by solving finite element
problems with HTS on your smartphone!
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Thanks for your attention

� cgeuzaine@uliege.be
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