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Some background

| am a professor at the University of Liege in Belgium, where | lead a team
of about 15 people in the Montefiore Institute (Electrical Engineering and
Computer Science Department), at the intersection of applied math,
electromagnetism and scientific computing
Our research interests include modelling, analysis, algorithm development,
and simulation for problems arising in various areas of engineering and
science

e Current applications: electromagnetics, geophysics, biomedical problems

We write quite a lot of codes, several released as open source software:
Gmsh, GetDP, ...

Our toolkit for modelling superconductors: Life-HTS


http://www.life-hts.uliege.be

o LiEGE

http://www.life-hts.uliege.be

Life-HTS

e Life-HTS: Liege University finite element
models for High-Temperature
Superconductors

o Numerical models for systems that contain
both superconducting and ferromagnetic
materials
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Life-HTS

e Life-HTS: Liege University finite element
models for High-Temperature
Superconductors

o Numerical models for systems that contain
both superconducting and ferromagnetic
http://www.life-hts.uliege.be materials

More specifically:

e Transient analysis for calculating field maps, magnetization, eddy currents,
losses, ...

e Stable schemes for dealing with nonlinear constitutive laws

e Includes formulations (e.g. h(-¢)-a) for combining ferromagnetic and
superconducting materials


http://www.life-hts.uliege.be
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o LiEGE
Life-HTS — Under the hood
Life-HTS is based on ONELAB A (Open Numerical Engineering LABoratory),
an interface to

e the mesh generator Gmsh (https://gmsh.info)
o the finite element solver GetDP (https://getdp.info)

transformer induction heating

rotating machine
Open-source, available for Windows, macOS, Linux, iOS, Android

Download from https://onelab.info


https://gmsh.info
https://getdp.info
https://onelab.info
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Life-HTS — Under the hood

Some numbers:
e Gmsh and GetDP started in 1996, ONELAB in 2010
e About 500k lines of C++ code
o Released under the GNU GPL v2+ (free and open source)


https://gitlab.onelab.info
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Life-HTS — Under the hood

Some numbers:

Gmsh and GetDP started in 1996, ONELAB in 2010
About 500k lines of C++ code

Released under the GNU GPL v2+ (free and open source)
3 main core developers; about 100 with > 1 commit
About 2,000 registered users on the development site
https://gitlab.onelab.info

About 20,000 downloads per month (70% Windows)

About 1,000 citations per year on Google Scholar; Gmsh has become one of
the most popular open source finite element mesh generators


https://gitlab.onelab.info

Hands-on: a first example

2D and 3D model of twisted HTS wires
Launch A then open models/Superconductors/helix.pro
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https://gitlab.onelab.info/doc/models/-/wikis/Superconductors

A Sketch of the Finite Element Method



W ¥ LIEGE

université

A simple 1D boundary value problem

e Solve
d du
_ _ = <zx<l1
i (e ) +ru=r 0sest,
with
1 2
ol@) = 14a, Wa)= o S =

and boundary conditions ©(0) = 0 and u(1) = 1.

10
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A simple 1D boundary value problem

e Solve
d du
- — = <z<l1
o (a(x) dac) +bx)u=f, 0<xz<1,
with
1 2
a() =140 o) = @)=
and boundary conditions ©(0) = 0 and u(1) = 1. [
e Solution osf
2 5 0.6
u(z) = v 04
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Finite Element Method: step 1

o Approximate u(x) in a finite dimensional space
Un(r) = ¢o(x) + D e ¢e(),
=1

with ¢o(z) = x such that ¢¢(0) = 0 and ¢y(1) = 1, whereas

0(0) =0, ¢(1)=0, £=1,...,m.

The linearly independent functions ¢,(z), ¢ > 0 span an approximation
space, H? , of dimension m.

11
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Finite Element Method: step 2

e Define the residual
d du,y,
r(r) = 0 (a(x) d:p) + 0() Uy, — f(2),

and require 7(x) to be orthogonal to H?, i.e.
(T,gbk):(), k‘:l,...,m,

where (u,v) = [} u(z)v(z)d.

12
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Finite Element Method: step 2
e Define the residual

o) == (ol G2+ 00) w0~ 110)

and require 7(x) to be orthogonal to H?, i.e.
(T,gbk):(), k‘:l,...,m,

where (u,v) = [, u(z)v(z)dz. This gives, for k =1,... m:

S (= (o) Gt ) ) + 000) 0. 00) = (16000,

with 79 = 1.

12
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Finite Element Method: steps 3 and 4

e Integrate by part to relax the differentiability requirements on ¢, and seek
for a weak solution,

Zakl Yo = (f(x), ) — arp, k=1,...,m,

where

one = (ate) G )+ 00 on ).

13
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Finite Element Method: steps 3 and 4

e Integrate by part to relax the differentiability requirements on ¢, and seek
for a weak solution,

Zak,f Yo = (f(x), dr) — aro, k=1,...,m,
/=1

where

one = (ate) G )+ 00 on ).

e Choose functions ¢, with a restricted support. The resulting matrix
elements a4 vanish for most (k, ¢) pairs.

A sparse system is obtained, which saves computational cost.

13
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Function space: use piece-wise linear Approximate solution:

nodal functions (here, m = 3)

7 ug = x g+ 202 + 1383
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Numerical example

Convergence when the mesh is refined:
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Finite Element Method: summary

e Need a function space for the approximations u,,,
Un(z) = ¢o(x) + Y e de(z), with boundary conditions
=1

e Impose (7, ¢) = 0 in weak form for all ¢, to get the linear system

Ax = b,

- <acig¢gawk> + (00, @), ®e =1, and by = (f, dx).
T dx

16
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Finite Element Method: summary

e Need a function space for the approximations u,,,
Un(z) = ¢o(x) + Y e de(z), with boundary conditions
=1

e Impose (7, ¢) = 0 in weak form for all ¢, to get the linear system

Ax = b,

Apy = <a:)3 x) + (boe, or) . Te =1, and by = (f, é).

In Life-HTS, a problem is described by specifying the function space and the
weak form equations

16



§°LIEGE _ | . .
<& et Finite Element Method with Life-HTS
e In practice, a text script (.pro file) contains the GetDP problem definition

structure
o A finite element mesh is required as input, built by Gmsh from a geometrical

description (script or CAD file)

e ] oo T
N N 4
FunctionSpac Formulation ‘% Resolution H{ PostProcessing ‘
- TAAR
,

See https://onelab.info/slides/onelab.pdf for details

17
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Learning curve

I did it!

No idea, what
I am doing.
But | keep
doing it.

Now | get it! This actually
makes sense.

| don't know s***!

This is
hard!

Time

www.theexcitedwriter.com

18
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Finite Element Formulations for
High-Temperature Superconductors

With technical details related to the Life-HTS implementation

19



Simple finite element formulations
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Introduction

Objective: Present and analyze various finite element formulations for modelling
HTS and their implementation in Life-HTS. We will follow the GetDP
philosophy:

o we will focus on building the weak form,

e and exploit the flexible function space possibilities, specifically for global
variables.

= We will cover some technical details.

21
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Introduction

Objective: Present and analyze various finite element formulations for modelling
HTS and their implementation in Life-HTS. We will follow the GetDP
philosophy:

o we will focus on building the weak form,

e and exploit the flexible function space possibilities, specifically for global
variables.

= We will cover some technical details.

Important remark: One does not have to deal with these details for running
existing templates.

Details are however fundamental for investigating new models and/or
understanding the code.

21
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General framework: magneto-quasistatics

e We aim to solve Maxwell’s equations in the magneto-quasistatic
(“magnetodynamic”) approximation

culh=j, cule=-0b, divb=0,

with
e h the magnetic field (A/m),
e j the current density (A/m?),
e e the electric field (V/m), and
e b the magnetic flux density (T),

while the displacement current 0,d is neglected

22
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General framework: magneto-quasistatics

e We aim to solve Maxwell’s equations in the magneto-quasistatic
(“magnetodynamic”) approximation

culh=j, cule=-0b, divb=0,

with
e h the magnetic field (A/m),
e j the current density (A/m?),
e e the electric field (V/m), and
e b the magnetic flux density (T),
while the displacement current 0,d is neglected

e Boundary conditions and constitutive laws relating b to h and e to 7 are
needed to obtain a well-posed problem

22



m ¥ LIEGE e as
& universite Constitutive laws

1. High-temperature superconductors (HTS):

e=p(|jl)g and b=poh,

where the electrical resistivity is given as

—n=10 )
—n = 20 ) ec j n—
1] e = (1)
=~ Je c
o
05 with e, = 1074 V/m,
Je, the critical current density,
0002 04 06 0s 1 n € [10,1000]
11311/

[C.J.G. Plummer and J. E. Evetts, IEEE TAS 23 (1987) 1179]
[E. Zeldov et al., Appl. Phys. Lett. 56 (1990) 680]

23
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Constitutive laws

2. Ferromagnetic materials (FM):

Ho Hri

L

b=puh)h and 35 =0.

Typical values (suprab0):
e initial relative permeability p,; = 1700

e saturation magnetization
poM =13 T

Eddy currents are neglected

[

24



Constitutive laws

2. Ferromagnetic materials (FM):

b=puh)h and 35 =0.

Typical values (suprab0):
e initial relative permeability p,; = 1700

e saturation magnetization
poM =13 T

Ho Hri
A Eddy currents are neglected
||

3. Air:

b=puyh and 3 =0.

24
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Constitutive laws, extensions

One can also consider
e normal conductors and coils,
e permanent magnets,
o ferromagnetic materials with hysteresis (e.g. [K. Jacques, thesis (2018)])
e type-l superconductors (need a London length)

25
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Boundary conditions and global variables
Domain {2 decomposed into:
e ., the conducting domain (Q. = UY,Q..),

e QF, the complementary non-conducting
domain.

Boundary conditions:
1. Local conditions. On domain boundary 02 =T
e h xn =h x n, imposed on
eexn=exmn(orb-n=>b-n) imposed on I'. (=T\T'}).

26
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Boundary conditions and global variables
Domain {2 decomposed into:
e ., the conducting domain (Q. = UY,Q..),

e QF, the complementary non-conducting
domain.

Boundary conditions:
1. Local conditions. On domain boundary 02 =T
ohxn:ﬁxn,imposedorl .
eexn=exmn(orb-n=>b-n) imposed on I'. (=T\T'}).

2. Global conditions. Either the applied current I;, or voltage V; is imposed (or
a relation between them, not covered here) on each separate conducting
region €),,

e I; = I;, imposed for i € Cy, a subset of C = {1,..., N},
o V; =V, imposed for i € Cy, the complementary subset.

26
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e Equations in €

Summary

divb=0, curl h=j, curle=—-0b.

e Constitutive laws:

‘e:pj, b:uh.‘

e Boundary conditions:

(h —h) x n|p, =0,
I, =1I, fori e Cy,

(e—e)xn|r, =0,
Vi =V, fori e Cy.

27
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Finite element formulations

Two classes of formulations:
e h-conform, e.g. :

e enforces the continuity of the tangential component of h,
e involves e = pj and b = uh,
e much used for HTS modelling.

28
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Finite element formulations

Two classes of formulations:
e h-conform, e.g. :

e enforces the continuity of the tangential component of h,
e involves e = pj and b = uh,
e much used for HTS modelling.

e b-conform, e.g. ‘a—zr-formulation

e enforces the continuity of the normal component of b,
e involves j =ceand h=vb, (6 =p~ 1, v=rp1)
e much used in electric rotating machine design.

Nonlinear constitutive laws involved in opposite ways = very different numerical
behaviors are expected. .. and observed.

28



w # LIEGE

université

Differential forms
We discretize the fields as differential k-forms. The exterior derivative d applied
on a k-form gives a k + 1-form:

e O-form, H', e.g. ¢ (scalar magnetic potential), v (scalar electric potential):
e continuous scalar fields (conform),
e generated by nodal functions 1, value (point evaluation) at node 7 = d,,7,
e exterior derivative is grad .

29
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Differential forms

We discretize the fields as differential k-forms. The exterior derivative d applied
on a k-form gives a k + 1-form:
e O-form, H', e.g. ¢ (scalar magnetic potential), v (scalar electric potential):
e continuous scalar fields (conform),
e generated by nodal functions 1, value (point evaluation) at node 7 = d,,7,
e exterior derivative is grad .
e 1-form, H(curl), e.g. h, e, a (magnetic vector potential), ¢ (electric vector
potential):
e vector fields with continuous tangential trace (curl-conform),
o generated by edge functions ., circulation (line integral) along edge é
= 5eé.
e exterior derivative is curl .

29
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Differential forms

We discretize the fields as differential k-forms. The exterior derivative d applied
on a k-form gives a k + 1-form:
e O-form, H', e.g. ¢ (scalar magnetic potential), v (scalar electric potential):
e continuous scalar fields (conform),
e generated by nodal functions 1, value (point evaluation) at node 7 = d,,7,
e exterior derivative is grad .
e 1-form, H(curl), e.g. h, e, a (magnetic vector potential), ¢ (electric vector
potential):
e vector fields with continuous tangential trace (curl-conform),
o generated by edge functions ., circulation (line integral) along edge é
= 5eé.
e exterior derivative is curl .
e 2-form, H(div), e.g. b, j:
e vector fields with continuous normal trace (div-conform),
e generated by facet functions 1, flux (surface integral) through facet f

=Op
e exterior derivative is div .

29
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Differential forms: illustration

Lowest order edge functions (1-form) for a triangular finite element:

v

-
i

h
L S SN
Edge 2

Their curl (2-form) are constant.

30
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Differential forms: Tonti diagram

e We can summarize it all on a Tonti diagram:

(6yw) —E2py gy G A

31
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Differential forms: Tonti diagram

e We can summarize it all on a Tonti diagram:

(6yw) —E2py gy G A

e h-conform formulations (h, h-¢, t-w, ...) satisfy the top exactly
e b-conform formulations (a, a-v, ...) satisfy the bottom exactly

31



Simple finite element formulations
The a-v-formulation
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Introduce the vector potential a, and the electric potential v:

b=curl a,

e = —0,a —grad v.

33
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Introduce the vector potential a, and the electric potential v:
b=curl a, e = —0,a —grad v.

Define @ in € and v in €. (discontinuous across electrodes):
e a as a 1-form and v as a O-form,
e satisfying the local BC (e — e) x n|r, =0,
e and global BC V; = V; for i € Cy (i.e. the circulation of —grad v around
conducting domain €2, is equal to V}).
This strongly satisfies

dvb=0, curle=-0b, (e—e)xn|r, =0, V;=1VforiecCy.

33
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Introduce the vector potential a, and the electric potential v:
b=curl a, e = —0,a —grad v.

Define @ in € and v in €. (discontinuous across electrodes):
e a as a 1-form and v as a O-form,
e satisfying the local BC (e — e) x n|r, =0,
e and global BC V; = V; for i € Cy (i.e. the circulation of —grad v around
conducting domain €2, is equal to V}).
This strongly satisfies

Fe:O, V;:f/iforiECV.

dvb=0, curle=-9b, (e—e)xn

What remains is:

culh=35, j=oce, h=vb, (h—h)xn|r, =0, I =I foricC.

33
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Choosing a and v

We still have freedom on the choice of a and v. Indeed, for any scalar field ¢,
the substitution

t
a—>a—|—/ grad ¢ dt
0
vV—=v— @
lets the physical solution, b and e, unchanged.

We present here one possibility for gauging a and v in:

(1) 2D case with in-plane b, (2) 3D case.

34
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Choosing a and v

We still have freedom on the choice of a and v. Indeed, for any scalar field ¢,
the substitution

t
a—>a—|—/ grad ¢ dt
0
vV—=v— @
lets the physical solution, b and e, unchanged.

We present here one possibility for gauging a and v in:

(1) 2D case with in-plane b, (2) 3D case.

In both cases, one global shape function v,; in each €2, is sufficient for
representing a unit voltage in €1, s.t. we have:

N
grad v = > V;grad v,;.

i=1

34
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Choosing a and v, cont’d

N
b=curl a, e = —0;a —grad v, grad v = Z Vigrad vg;
i=1

1. 2D with in-plane b:

e We choose a along 2,

a=> antn2,

neQ)

with v, the nodal function of node n.
NB: It is a Coulomb gauge, as diva =0

e grad v, is along 2 and constant (= 1) in each
Q. (V is a voltage per unit length.)

e Remaining constant fixed by BC.

35
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a = Zan ¢n27

neQ

FunctionSpace {
// Perpendicular edge functions (1-form field in the out-of-plane direction)
{ Name a_space_2D; Type FormiP;
BasisFunction {
{ Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
Support Omega_a_AndBnd; Entity NodesOf [Al1l]; }
}
Constraint {
{ NameOfCoef an; EntityType NodesOf; NameOfConstraint a; }
}
}

36
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Life-HTS grad v in 2D, with in-plane b

N N
grad v => V,grad vy, = > V; 2,
] =1

i=1

FunctionSpace {
{ Name grad_v_space_2D; Type FormlP;

BasisFunction {
// Constant per region and along z. Corresponds to a voltage per unit length
{ Name zi; NameOfCoef Vi; Function BF_RegionZ;

Support Region[OmegaC]; Entity Region[OmegaCl; 1}

}

GlobalQuantity {
// Associated global quantities to be used in the formulation
{ Name V; Type AliasOf; NameOfCoef Vij; }
{ Name I; Type AssociatedWith; NameOfCoef Vij; }

}

Constraint {
{ NameOfCoef V; EntityType Region; NameOfConstraint Voltage; 1}
{ NameOfCoef I; EntityType Region; NameOfConstraint Current; }

}

37



% * LIEGE

université

Choosing a and v
2. 3D:

e In Q, define vg; to be zero everywhere except
on a transition layer in €2, : layer of one
element, on one side of the electrodes, in each
Qc, (v has no longer a physical interpretation),

N
grad v = > V; grad vg;.

i=1
e a is generated by edge functions.

e In Q¢, a is unique, e.g. outside the transition
layer e = —0,a (reduced vector potential).

e In QF, a is made unique with a co-tree

gauge. ..

38
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Co-tree gauge for a in QF in 3D

e In QF, only curl @ = b has a physical meaning. One degree of freedom
(DoF) per facet is sufficient (and necessary), instead of one DoF per edge.

e The support entities of the 1-form a are the edges.

e To associate a unique edge to each facet: consider only edges in a co-tree,
i.e. the complementary of a tree:

a= Z ae P,.

e€QcU(co-tree in QF)

NB: Be careful on the conducting domain boundary 92, no gauge there because a is already unique.

39
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a= Z ae P,

e€QcU(co-tree in QF)

FunctionSpace {
{ Name a_space_3D; Type Formi;
BasisFunction {
// Usual edge functions everywhere (decomposed to handle BndOmegaC) correctly
{ Name psie ; NameOfCoef ae ; Function BF_Edge ;
Support Omega_a_AndBnd ; Entity EdgesO0f[ All, Not BndOmegaC ]
{ Name psie2 ; NameOfCoef ae2 ; Function BF_Edge ;
Support Omega_a_AndBnd ; Entity EdgesOf[ BndOmegaC ]

H

s
}
Constraint {
{ NameOfCoef ae; EntityType Edges0f; NameOfConstraint a; }
{ NameOfCoef ae2; EntityType EdgesOf; NameOfConstraint a; }
{ NameOfCoef ae; EntityType EdgesOfTreeIn; EntitySubType StartingOn;
NameOfConstraint GaugeCondition; }

}
}
Constraint {
{ Name GaugeCondition ; Type Assign
Case {
// Zero on edges of a tree in Omega_CC, containing a complete tree on Surf_a_noGauge
{Region Omega_a_OmegaCC ; SubRegion Surf_a_noGauge; Value 0.; }

}
}
}

40
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FunctionSpace{

{ Name grad_v_space_3D;
BasisFunction {

// Global unit voltage shape function.

Name vi; NameOfCoef Vi;

{

}

Life-HTS v in 3D

N
grad v = > _V; grad vy,

Support ElementsOf [OmegaC,
Entity GroupsOfNodesOf [Electrodes]; 1}

GlobalQuantity {

// Associated global quantities to be used in the formulation.
Name V; Type AliasOf;

{
{
}

=1

Type Forml;

NameOfCoef Vi; }

Name I; Type AssociatedWith; NameOfCoef Vij; }

Constraint {

{

{

NameOfCoef
EntityType
NameOfCoef
EntityType

v,
GroupsOfNodesOf;
I;
GroupsOfNodesOf;

NameOfConstraint Voltage;

NameOfConstraint Current;

}

}

Support limited to only one side of the electrodes
Function BF_GradGroupOfNodes;
OnPositiveSideOf Electrodes];
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Choosing a and v, other possibilities

Various alternatives can also be considered in 3D:
e Distributed support for v, via a preliminary FE resolution [S. Schéps, et al.,
COMPEL (2013)]
o Coulomb gauge in QS via a Lagrange multiplier [Creusé, et al., Computers &
Mathematics with Applications, 77(6), 1563-1582 (2019)]
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Derivation of the

What remains is:

a-v-formulation

©

curl h=3, j=o0e, h=uvb,

= curl (vcurl a)=—0 (8;a+grad v) @

(h—h)xnlp, =0, I;=1I foricCy

, cont’d

@
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Derivation of the «-v-formulation, cont’'d

What remains is:

©
curlh=3, j=oe, h=vb, (h—h)xn|r, =0, I,=1I foricC
= curl (veurl a)=—o (Sra+grad v) X) @

e Multiply %) by a test function a’, in the same space than a but with
homogeneous BC, and integrate over (2,

(curl (veurl @) ,a'), + (0 (Oia +grad v) ,a’), =0
= (veurla ,curl )y, — (veurlaxn, a')r,
—_——
Neumann BC ®
+ (cda ,a), + (ocgrad v ,a’), =0
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Derivation of the «-v-formulation, cont’'d

What remains is:

©
curlh=3, j=oe, h=vb, (h—h)xn|r, =0, I,=1I foricC

= curl (veurl a)=—o (Sra+grad v) X) @

e Multiply %) by a test function grad v, and integrate over €,

(curl (vcurl @) ,grad V'), + (o ata grad o),
+ (o grad v ,grad V'), =

= —(veurla xn grad v),, + (8ta,,gradfu)

d..
+ (o grad v ,grad v'), =0
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Derivation of the «-v-formulation, cont’'d

e The surface term simplifies

(veurl a x n ,grad v'),, = (h xn  grad v'),,
= (h ,n x grad v’)mc
= (h’ ,m % grad U/)a(transition layer)
=1V =1V (Ampere's law + @).

45



o LiEGE

a-v-formulation

Finally, the | a-v-formulation | amounts to find @ and v in the chosen function
spaces such that, Va’' and v/,

(veurl a ,curl '), — (h X Mg ,a’)r
h

+ (0‘ o:a 7(1,’)QC + ((7 grad v 7a’)QC =0,
N
(00w ,grad V'), + (o grad v ,grad v'), => LVi(V'),

i=1

with I; = I, for i € Cy, and V;(v') = V/ (i.e. the DoF associated with the unit
voltage function v;).
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When the test function v' = v,; is chosen (V;(v4;) = 1), the second equation
reads

(0 (Oia +grad v) ,grad vg;), =1,
= (0ce,—grad vd,i)ﬂc =1I,.

“Flux of oe (= j) averaged over a transition layer = total current”.

NB: The flux of oe depends on the chosen cross-section as oe is not a 2-form (as j

should be). Conservation of current is weakly satisfied.
47
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The h-¢-formulation
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Derivation of the

Choose h such that
e it is a 1-form,
. (h—fl) ><n|ph =0,
e curl h =0 in QF (this is the key point),
e and express j directly as 3 = curl h in €., with h generated by edge
functions.

49



& * LIEGE
niversite Derivation of the

Choose h such that
e it is a 1-form,
° (h — il) Xn
e curl h =0 in QF (this is the key point),
e and express j directly as 3 = curl h in €., with h generated by edge
functions.

r, =0,

What are the functions h that satisfy curl h = 0 in Q$?

= Surely gradients of scalar functions!
o If h = grad ¢, then curl h = 0, V¢.

e However, choosing only h = grad ¢ does not
allow to represent a net current intensity
(necessary if Q¢ is multiply connected).

e We need additional functions. ..
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Derivation of the

e One global shape function ¢; for each €, is
enough for representing a unit current intensity
in Q.

e As with the \ a-v-formulation |, we have freedom
on the choice of these functions. The only
constraint is that

o dl =0,
y{:icj J

In QF, we therefore have

N
h = grad qb—l—ZIl-ci.

i=1
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Sniéerls Choice of the global functions

One possibility for choosing the ¢; functions, the functions:
e Introduce to make Q¢ simply connected.
e Define the ¢; on . layer of one element on one side of the
cut, for each cut.
e ¢; = grad ¢4, with ¢4; a discontinuous scalar potential.
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Sniéerls Choice of the global functions

One possibility for choosing the ¢; functions, the functions:
e Introduce to make Q¢ simply connected.
e Define the ¢; on . layer of one element on one side of the
cut, for each cut.
e ¢; = grad ¢4, with ¢4; a discontinuous scalar potential.

NB: Gmsh has an automatic cohomology solver for generating cuts in

complicated geometries (e.g. helix windings)
[M. Pellikka, et al. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214 (2013)]
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Summary and shape function supports

In © we have

=Y ¢.grad i, + > hep, —|—Z[ ci.

neQf €N\

Gradient of node ) _ Global cut function. Net
Classical edge functions. current + 0.

functlons

Note: Gray areas = ().
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Life-HTS A in 2D or 3D
=Y ¢ngrad v+ > he 1/)6+ZI ci.

neQC e€Q\0Nc i=1

FunctionSpaceq{
{ Name h_space; Type Formil;
BasisFunction {
// Nodal functions
{ Name gradpsin; NameOfCoef phin; Function BF_GradNode;
Support Omega_h_OmegaCC_AndBnd; Entity NodesOf [OmegaCCl; }
{ Name gradpsin; NameOfCoef phin2; Function BF_GroupOfEdges;
Support Omega_h_OmegaC; Entity GroupsOfEdgesOnNodesOf [BndOmegaCl; }
// Edge functions
{ Name psie; NameOfCoef he; Function BF_Edge;
Support Omega_h_OmegaC_AndBnd; Entity Edges0f[All, Not BndOmegaCl; }
// Cut functions
{ Name ci; NameOfCoef Ii; Function BF_GradGroupOfNodes;
Support ElementsOf [Omega_h_OmegaCC, OnPositiveSideOf Cuts];
Entity GroupsOfNodesOf [Cuts]; }
{ Name ci; NameOfCoef Ii2; Function BF_GroupOfEdges;
Support Omega_h_OmegaC_AndBnd;
Entity GroupsOfEdgesOf [Cuts, InSupport TransitionLayerAndBndOmegaCl; }

}
GlobalQuantity {
{ Name I ; Type AliasOf ; NameOfCoef Ii ; }
{ Name V ; Type AssociatedWith ; NameOfCoef Ii ; }
}
Constraint {
{0...7}
{0[0...7}
}rr
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Dealing with global variables, alternatives

Other possibilities can also be considered:
e Winding functions
[S. Schéps, et al. COMPEL (2013)]
o Large resistivity (= 1 Qm) in QF and integral constraint on the current

(simple but much more DoF), leading to a full h-formulation
[Shen, B., et al., IEEE access, 8 (2020) 100403-100414]
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With the chosen h, we strongly satisfy
curl h =35, (h—h)xmn|, =0,

, cont’d

I, =1 forieCy.

55



Derivation of the , cont’d

With the chosen h, we strongly satisfy
culh=35, (h—h)xn|, =0, I,=1I foricCy.

What remains is:
divb=0, curle=-0b, e=pj, b=puh,
(e—e)xn|p, =0, V;=V,forieCy.

We model an external applied voltage V' by a
localized e, field in a modified Ohm's law:

e:ezx+pj7 @

with e, = V(& — &€5)n so that we globally
have a net E.M.F. (4(-) is the Dirac distribution)
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Derivation of the , cont’d

What remains is:
= curl (pcurl h)+curl e,=—0;(uh) @

dvb=0, curle=-0b, e=e,+pj, b= puh,
(e—e)xnlp, =0, Vi=V,foriecCy.

© ®
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Derivation of the , cont’d

What remains is:
= curl (pcurl h)+curl e,=—0;(uh) @

dvb=0, curle=-0b, e=e,+pj, b= puh,
(e—e)xnlp, =0, Vi=V,foriecCy.

© ®

e Multiply ®) by a test function h’, in the same space than h but with
homogeneous BC, and integrate over (2,

(Ou(uh) ,h')g + (curl (pcurl h) k'), + (curl e, ,h'), =0,
= (0i(ph) ,h')o + (pcurl b curl ), + (e, ,curl b'),
@
—(e(ea+peurl h) xn , h')r, =0

Neumann BC ©
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& ettt Darivation of the , cont’d

e The third term simplifies
(ea ,curl h'), =V (6(& —&s)n ,curl B'),,
=V (n ,curl A),,

=V ¢ h'-de
o%

=VI=Vvr (Ampere's law + @).
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Derivation of the , cont’d

What about div b = 07
e Taking h' = grad ¢’ in the formulation yields

(O:(uh) ,grad ¢'), + (curl (e, + pcurl h) ,grad ¢'), = 0,
= — (div (3i(uh)) , @')q + (Oe(ph) -1, &)y,
—(exn ,grad ¢'). =0.

One can show that (0;(uh) -n ,¢'), = (e x n ,grad ¢'). , so with
(e —e) x n|p, = 0, what remains is

at( (div (uh) ,¢’)Q) —0,

such that div b = 0 is (weakly) verified if the initial condition hy, is such
that (div (phy,) ,¢')g = 0.
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Finally, the amounts to find h in the chosen function space
such that, Vh/,

(O (uh) ,h'), + (pecurl b curl A'),

N
—(exmn ,h')Fe + ZVz-IZ-(h’) =0,

=1

with V; = V; for i € Cy, and Z;(h') = I! (i.e. the DoF associated with the cut
function ¢;).
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— Interpretation

When the test function ¢; (Z;(¢;) = 1) is chosen, we get the equation:

(O(ph) ,ci)g + (peurl b curl ¢;),, = —Vi.

“Flux change ph (= b) + circulation of pj (= e),
both averaged over a transition layer = total voltage”.

NB: The flux of ph depends on the chosen cut as ph is not a 2-form (as b should be).
Same for p 3.
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Structure of the resolution

o After spatial discretization, we obtain a system of time-dependent, nonlinear
ordinary differential equations of the form

K(xz,t)x(t) + M(xz,t) z(t) = b(t)
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Structure of the resolution

o After spatial discretization, we obtain a system of time-dependent, nonlinear
ordinary differential equations of the form

K(xz,t)x(t) + M(xz,t) z(t) = b(t)

e Resolution: two imbricated loops
e Time-stepping: Implicit Euler with adaptive time steps ¢,
e lterative solution of the nonlinear system at each time step t:
Newton-Raphson or fixed point (Picard)
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Resolution techniques
Time integration
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Implicit Euler
Time derivatives at time step t,, are expressed as:
dx () = x(t,) —x(t,—1)
" At ’
with x(t,,) containing the DoFs and u(t,,—1) being known from the initial
conditions (first step) or from the previous step.

At each step t,, we end up with a system of nonlinear equations of the form

A(z(tn)) 2(tn) = b(in)
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Implicit Euler

Time derivatives at time step t,, are expressed as:
dx () = x(t,) —x(t,—1)
" At ’

with x(t,,) containing the DoFs and u(t,,—1) being known from the initial
conditions (first step) or from the previous step.

At each step t,, we end up with a system of nonlinear equations of the form

A(z(tn)) 2(tn) = b(in)

Other possibilities can be implemented:
e Explicit Euler,
e Crank-Nicholson,
e Higher-order schemes (e.g. BDF)...
= In Life-HTS we just explicitly write the scheme in the GetDP formulation.
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Life-HTS implicit Euler in formulation

Example: flux variation term (9;(uh) ,h')q in

[L’Ln ’L/ lL’l7P*1 ’l/
At A
Q Q
Formulation {
{ Name MagDyn_htot; Type FemEquation;
Quantity {

{ Name h; Type Local; NameOfSpace h_space; }
{[0...171%
}
Equation {
// Flux variation term (on the linear magnetic domain)
Galerkin { [ mu[]l * Dof{h} / $DTime , {h} 1;
In MagnLinDomain; Integration Int; Jacobian Vol; }
Galerkin { [ - mu([] * {h}[1] / $DTime , {h} ];
In MagnLinDomain; Integration Int; Jacobian Vol; }
[...]
}r3

Syntax:
e Dof{h}: DoF at the current time step n (and iteration),

e {h}[i]: saved/known solution of h at time step n — i,
e {h}: solution at the previous iteration (see later).
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Adaptive time-stepping

=ty -
Solve Ax = b b
with a time_step At Reduce timestep: Parameters:
¥ At :=~vyAt vy < 1 .7:1/2
# iterations > Jjux .
or g ° ﬂ =2
no convergence? | Yes . .
%gno ® lfast — Zmax/4
Convergence in less]| Yes o Fixed-point: ipax = 400
than i, iterations ? o Newton-Raphson

Increase timestep:
At = min(SA, Abyax)
with > 1

imax =90
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.»t Life-HTS time-stepping in resolution

{ Name MagDyn;
System { {Name A; NameOfFormulation MagDyn_htot;} }
Operation {
[...1
// Initialize}
SetTime[ timeStart ]; SetDTime[ dt ]; SetTimeStep[ 0 ];
// Time loop
While [$Time < timeFinalSimu && $DTime > 1e-10]{
SetTime[ $Time + $DTime ]; SetTimeStep[ $TimeStep + 1 1;
// Customized iterative loop
Call CustomIterativeLoop;

// 1f converged (= less than iter max and not diverged)...
Test[ $iter < iter_max && ($res / $res0 <= 1e10)]{

SaveSolution[A];

Test[ $iter < iter_max / 2 && $DTime < dt_max]{
Evaluate[ $dt_new = Min[$DTime #* 2, dt_max] 1;
SetDTime [$dt_new];

¥

}
// ... otherwise, decrease the time step and start again
{

RemoveLastSolution[A];

Evaluate[ $dt_new = $DTime / 2 1;

SetDTime [$dt_new];

SetTime [$Time - $DTimel; SetTimeStep[$TimeStep - 1];
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Linearization methods
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Solving a nonlinear equation: f(z) =10

1. Picard iteration method (a fixed point method):

=
&
Il
=
&
IS
Q.
[ ]

Write f(x) as f(x) = A(x)x.

o Get a first estimate x.

X
[ ]

At each iteration i:

Alwi)z Alzi)z e solve A(z;_1)z =,
R ; ; e 1, :=ux,
7 ' ' e i:=1i+ 1 and loop.
Ti  Tiy2 Tit1 e Stop when convergence criterion is
X

met.

e May converge for wide range of first estimates x.
e Convergence is slow!
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2. Newton-Raphson

Solving a nonlinear equation: f(z) =70

iterative method:

f(a) = A(x)z o Get a first estimate xo.
Y e At each iteration 1, solve for z;:
b .
= T Vi) ( ) = Flaim)
S~ [ — (i €T: — Ti_ — €Ti_ .
E E dx 1—1 [ 1—1 1—1
: o e Stop when convergence criterion is
: L met.
Zi Tit2 Titl
x

e Quadratic convergence, if the initial est. xq is close enough.
e Relaxation factors can also be implemented.

e If x is a vector,

% is a matrix (Jacobian matrix). ..
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wreste Jacobian for isotropic constitutive laws

e Consider a constitutive law of the form
a(xz) = g(||l=l) =z

Example: e =pj,or b= puh, ...
e The Newton-Raphson expansion can be cast in the form

a(wi) ~ a(wifl) + J(wzel) . (wz _ wi71> ’

where J is the Jacobian matrix (i is the iteration index):

T@e = 25 = b gl 1 e L
ik 8[Ek ]kg &k ||X|| .
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wreste Jacobian for isotropic constitutive laws

e Consider a constitutive law of the form
a(xz) = g(||l=l) =z

Example: e =pj,or b= puh, ...
e The Newton-Raphson expansion can be cast in the form

a(wi) ~ a(wiq) + J(wzel) . (wz _ wzel) ’

where J is the Jacobian matrix (i is the iteration index):

. D
L= 5. |l |
@)= 52 = gel) + a0~
o Example: (pcurl b ,curl b'), in , with curl h = j:

. . Oe , .. . Oe , .. ;
2i—1\ i—1 | h/ Ot S | h/ [ ZEai-1y i1 | h/
(p(G" 13" Jeurl b)), + g5 U 3" eur & G eur

Worked-out Jacobians in [J. Dular et al. TAS 30 8200113 (2020)]
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M Life-HTS Picard and Newton-Raphson

in formulation
Example: nonlinear term (pcurl b, curl h'), in

N-R: (p(3" )5 eurl '), + (g‘;(ji—l) 3'  curl h’) o (g;(ji—l) 37 curl h’)

c

Formulation {
{ Name MagDyn_htot; Type FemEquation;

Quantity {
{ Name h; Type Local; NameOfSpace h_space; }
{[0...1%

}

Equation {
// (1) Picard
Galerkin { [ rho[{d h}]] * Dof{d h} , {d h} 1;

In NonLinOmegaC; Integration Int; Jacobian Vol; }

// (2) Newton-Raphson}
Galerkin { [ rho[{d h}] * {d nh} , {d h} 1;

In NonLinOmegaC; Integration Int; Jacobian Vol; }
Galerkin { [ dedj[{d h}] #* Dof{d h} , {d h} ];

In NonLinOmegaC; Integration Int; Jacobian Vol; }
Galerkin { [ - dedj[{d h}] * {d h} , {d h} 1;

In NonLinOmegaC ; Integration Int; Jacobian Vol; 1}
[...1

}r}

QC
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Choosing the first estimate

e We use polynomial extrapolation:

L
\J
L

\/

(a) Zeroth-order extrapolation (b) First-order extrapolation (c) Second-order extrapolation

e It can significantly affect the required number of iterations
e Best results:
e 1st order for the

e 2nd order for the ‘ a-v-formulation ‘

In the resolution: SetExtrapolationOrder[ n ]; (n € N)
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Convergence criterion

e The residual b — A(x;)x; can be misleading

e In practice we usually choose the electromagnetic power, P, as a (global)
convergence indicator:

P = (0y(ph) ,h)g+ (pcurl b ;curl h),

| a-v-formulation |

P = (0y(curl @) ,vcurl a), + (ce ,e)q,

with e = —0;a — grad v
o We stop when |AP/P| is small enough:

e ~ 10~® with Newton-Raphson
e ~ 10~ with Picard
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Resolution techniques

Comparison of the formulations
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To fix ideas: a superconducting ring

®>0

Consider a superconducting ring
subjected to a time-varying flux, . The
ring is modelled as a non-linear lump
resistor with

ch I n—1
rin =5 (1)

where V. and I, are characteristic
voltage and current, and n is a critical
index.
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To fix ideas: a superconducting ring

®>0

The circuit equation

can be solved in one of two ways!

Consider a superconducting ring
subjected to a time-varying flux, . The
ring is modelled as a non-linear lump
resistor with

ch I n—1
rin =5 (1)

where V. and I, are characteristic
voltage and current, and n is a critical
index.

d=R(I|)I+LI
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Ring, 1%t way: solve for the current

e Discretize in time: ¢; = jAt,j =0,1,2,..,
« Consider the implicit Euler method with I ~ (I; — I;_1)/At,

. . . |17, I. —I.
d=R(INI+LI — & = vc|f|]n S Vs L

c

v
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Ring, 1%t way: solve for the current

e Discretize in time: ¢; = jAt,j =0,1,2,..,
« Consider the implicit Euler method with I ~ (I; — I;_1)/At,

: : - 7" I
b=R(INI+LI — & = V +L

I — 1,

I7 At

e Make this adimensional by introducing « = al;/I,, to obtain
b=|z|" 'z +x, (I-form),

where

VAL 1/(n—1) d b (i)j + LIj_l/At
a = =
LI, all./At

v
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Ring, 2"¢ way: solve for the
voltage drop across R

e Solve now in terms of V; = RI;,

L Vi Ve[ " V3 Ve — I

d=R(INI+LI — & =V,+L ~
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Ring, 2"¢ way: solve for the
voltage drop across R

e Solve now in terms of V; = RI;,

L Vi Ve[ " V3 Ve — I
At '

d=R(INI+LI — & =V,+L

e Make this adimensional with z = ch/VC, to get
d=|z|Y" ‘o +x, (V-form),

where

n/(n—1) -
[ At % LI,
C_<L[C> and d—?—i—TAt.
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Ring example, summary

In each case, need to solve an equation of the form f(z) = constant:

fla) = |z[" o+ fl) = |z te+ 2

— f(x)

I-form V-form
~ h-conform (Ampére) ~ b-conform (Faraday)
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Nonlinearity in HTS for complementary
formulations

flx) =|z" v+ flz) =z 'z +

(e=pJ) ‘(1,—1,'—formu|ation ‘ (j =oe)

Different nonlinearities = different numerical behaviors
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Beware of Cycles &
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Cycles can occur in each method, depending on the shape of the function f(z):

Picard iteration on Newton-Raphson iteration on
a-v-formulation ‘

Prefer Newton-Raphson! Prefer Picard!

Relaxation factors can help, but no efficient solution (that we know of)
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h-form. 11411 (A/m?)

System

Hohs Side ¢ = 10 mm.

‘ pohs = 2 By sin(27 ft),
with B(] =200 mTv
f =50Hz,
jC = 108 A/m2 and
n = 100.

Residual

e Loynormofr=Ax —b
o Left:

e Right: | a-v-formulation]|

1.07 x 10

I

0

a-form.

107

1077 \ N
V\ \.\ \‘.
IR

:

1072 L |

10*

102

|
0 10 20

Iteration number ¢

(a) Newton-Raphson technique.

= Much more efficient with Newton-Raphson (as is expected!)

30

0

|
20 40 60 80
Iteration number &

(b) Picard technique.
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Hands-on: h-¢- and a-v-formulation

Magnetization of a superconducting pellet: phenomenology

Magnetize a cylindrical pellet of aspect ratio 0.5 (height/diameter) in an axial
field of maximum 0.6 x the penetration field:

l ‘ Applied field [T]
2.04
1.53
1.02
0.51
1.91le-14
-0.51
-1.02
1.53
2.04
21 159 316 473 630
Time [s]
\ J Avg. magnetization [T]
13
0.765 D
E. H. Brandt, PRB 58 (1998) L%
-0.383 -
6506 Rkt S —
t SVBZ 04 -1.02 191e-14 1.02 2.04 Y
Applied field [T] Lz__x
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Hands-on: h-¢- and a-v-formulation

Magnetization of a superconducting pellet: h-¢-formulation and a-v-formulation

Gmsh -yinderigeo- cylinderpro

SoxvzQuas (1110 vone -1 -~ Gewp - Tine 161 ¢ Constrain 7 ded .1

models/Life-HTS/cylinder/cylinder.pro


https://gitlab.onelab.info/life-hts/life-hts/-/tree/master/cylinder
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Conclusion for HTS

The diverging slope associated with 7 = oe for 7 — 0 is really difficult to handle.

= Among the two simple formulations, the is much more
efficient for systems with HTS:

e with an adaptive time-stepping algorithm,
e solved with a Newton-Raphson method,

e with a first estimate obtained by 15t-order extrapolation.
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One particular case: “single time step”

e For large values of n, nearly a critical state model.
e Robustness of Picard on the 3 = oe law can help to reduce the number of

time steps.
S 0.15 = ‘ ‘ : : ‘
= 01 i . e a-formulation |
g . i i
= 0.05| o h-formulation |
2 .
4;3 0 e . B
S-0.05|- . |
g . ®. ®.
o0 — - . |
& 0.1 . :
=-0.15 : L L L o

-0.2 —0.1 0 0.1 0.2

Applied field hs/jca

o Here, for a magnetization cycle (3D cube problem)

e lines: with 300 time steps,

e dots: ‘a,—’u—formulation ‘ with 20 time steps = much faster!
e In practice, accurate for 3 and b, but e is underestimated
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The nonlinearity is in the magnetic constitutive law.
. the involved law is b = ph.

ot

= Easily enters cycles with Newton-Raphson.

OK with Picard, or N-R with relaxation factors but slow.
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R niversit Ferromagnetic materials

The nonlinearity is in the magnetic constitutive law.
. the involved law is b = ph.

ot

= Easily enters cycles with Newton-Raphson.
OK with Picard, or N-R with relaxation factors but slow.

e |a-v-formulation | the involved law is b = vb.

|
‘V{ ~

= Efficiently solved with Newton-Raphson.

The ‘ a-v-formulation ‘ is more appropriate for dealing with the nonlinearity,
whereas for HTS, the complementary formulation was best.
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Coupled materials — /.(-¢)-a-formulation

| Use the best formulation in each material |

Decompose the domain 2, for example into:
. = {HTS}
e (% = {Ferromagnet, Air}

and couple via I'y, = O(HTS):

(0i(uh) . B)  + (peurd b curl b') +(0a x ng.  h'), =0,

(veurl a ,curl @), — (h X nga ,a'). =0.

(For homogeneous Neumann BC)
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h(-¢)-a-formulation| results

Ferromagnet
Example: NG ]
e Stacked cylinders ‘*"IT/"" X
. . Superconductor ARy i
e 2D axisymmetric N AR A

o External applied field ’: y

t

Number of iterations for three discretization levels:

a-v-formulation| | (-¢)-a-formulation

Coarse 1878 4381 1071
Medium 3366 7539 1931
Fine 4422 14594 3753

In general, a speed-up from 1.2 to 3 is obtained.
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h(-¢)-a-formulation

The formulation is mixed (two unknown fields on I'y,)
= Shape functions must satisfy an inf-sup condition.

e First-order functions for h and a (inf-sup KO)

stability

P ’f / /// Rz N \ \\\\\\\ Q\‘\‘\\\
T /,/ R S |~

X //f: e Ferromagnet TN \‘:\:\\ S
s /’"f’\ /TN T ‘/ \ /‘\\}‘\\'\\\
/;/f,f/n j : ‘ o H\\\\
YA HTS BRI AR
ff f4 ! 'Aﬁkl}A\

e Second-order for a, first-order for h (inf-sup OK)

z :’/ //;4//////// , ‘ \\ \\\ \‘\\\
-~ "’ ‘ S P \\ \ \ .:—\
=k ///j o Ferromagnet \\ B0
g ;'W-—'”~'*’ VAN \:*:\'?\\\
Al BTN
foaht, HTS Ay !
/’fr"A‘ 'Au‘\Lh\
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Life-HTS Hierarchical functions

Example for 2"-order shape functions for a (in 2D) on T'y,:

FunctionSpace{
{ Name a_space_2D; Type FormlP;
BasisFunction {
// Usual first-order functions
{ Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
Support Omega_a_AndBnd; Entity NodesOf [A11]; }
// Second-order functions on BndOmega_ha only
{ Name psin2; NameOfCoef an2; Function BF_PerpendicularEdge_2E;
Support Omega_a_AndBnd; Entity EdgesOf [BndOmega_hal; }
}
Constraint {
{ NameOfCoef an; EntityType NodesOf; NameOfConstraint a; }

{ NameOfCoef an2; EntityType EdgesO0f; NameOfConstraint a2; }
}

wn 77bn2

94



o LiEGE

Life-HTS Hierarchical functions

Example for 2"-order shape functions for a (in 2D) on I'y,;:

FunctionSpace{
{ Name a_space_2D; Type FormlP;
BasisFunction {
// Usual first-order functions
{ Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
Support Omega_a_AndBnd; Entity NodesOf [A11]; }
// Second-order functions on BndOmega_ha only
{ Name psin2; NameOfCoef an2; Function BF_PerpendicularEdge_2E;
Support Omega_a_AndBnd; Entity EdgesOf [BndOmega_hal; }
}
Constraint {
{ NameOfCoef an;
{ NameOfCoef an2;
}

EntityType NodesOf; NameOfConstraint a; }

EntityType EdgesO0f; NameOfConstraint a2; }

}
}

Uy /\wm

NB: This is for a locally enriched function space. Using 2"-order elements on the whole
domain can be done directly at the meshing step (using e.g. gmsh -order 2).
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Mixed finite element formulations

The t-a-formulation



e -
HTS tapes - {-a-formulation
To model thin superconducting tapes, two main possibilities:
1. Use the true geometry and the ‘ h-¢-formulation ‘ with one-element across
the thickness (quadrangle):

2. Perform the slab approximation and model the tape as a line =
t-a-formulation |

96



o LiEGE

t-a-formulation

Consider a tape I',, of thickness w.
The current density is described by a current
potential ¢:

e such that 73 = curl ¢,

e gauged by being defined along the normal
of the tape, t = tn,

o with BC related to the total current [
(tt —t= =1/w).

In Q,, write the | a-v-formulation | and express the surface integral
(h xn ,a'); in terms of the surface current density w curl ¢.
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t-a-formulation

Find a and t in the chosen function spaces such that, Va/', t':

(veurl a curl a’), — (h X ng ,a’)rh — (wcurl t 7a,’) =0,
woa ,curl t'). + (wpcurl t  curl t') ViZi(t
Tw P
icC

with V; = V; for i € Cy, and Z;(t') = I! (i.e. the DoF associated with the BC
w(tt —t7)).

It is basically an | h(-¢)-a-formulation | with a slab approximation

= More information and applications in F. Grilli’s lecture tomorrow

See also [Bortot, L., et al., IEEE TAS 30(5), 1-11 (2020)]
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t-a-formulation| - Stability

The | t-a-formulation | is mixed (two unknown fields on T',)

= Shape functions must satisfy an inf-sup condition

Similar conclusions than with the | i(-¢)-a-formulation

Example for a 2D case, current density along the tape:

1 S 1%-order for @ and ¢
2"_order for @ and 1%t-order for ¢
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Life-HTS function space for t

Defined as a scalar quantity in the FunctionSpace, the normal n is introduced
in the formulation:

N
t= > tabn+ D Tili, with t=tin.
i=1

71651‘1u \f)ljzu

FunctionSpace{
{ Name t_space; Type Form0;

BasisFunction {
// Node functions except on the lateral edges of the tapes
{ Name psin; NameOfCoef tn; Function BF_Node;

Support Gamma_w; Entity NodesOf [A1l, Not LateralEdgesl; }
// Global shape function for representing a net current intensity
{ Name elli; NameOfCoef Ti; Function BF_GroupOfNodes;
Support Gamma_w_AndBnd; Entity GroupsOfNodesOf [PositiveEdges]; }

¥

GlobalQuantity {
// Global quantities to be used in the formulation
{ Name T ; Type AliasOf ; NameOfCoef Ti ; }
{ Name V ; Type AssociatedWith ; NameOfCoef Ti ; }

¥

Constraint {
{ NameOfCoef V; EntityType GroupsOfNodesOf; NameOfConstraint Voltage; }
{ NameOfCoef T; EntityType GroupsOfNodesOf; NameOfConstraint Current_w; }

3

¥
¥
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Hands-on: 3D HTS magnet motor pole
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One eight of the geometry
(air domain not shown)

models/Life-HTS/magnet/magnet.pro

NL laws Function space Number of DOFs o #0in Q57
h p.oun heH()={hec HQ)} Edges in Yes
h-¢ po heM,(Q)={he€H(Q)|curlh=0inQF} Edges in Qc + Nodes in QF No
a o,v acAQ)={ac HQ)} Edges in Q (Yes)*
a o, v ac€A) ={ac H(Q) | cotree gauge in QF} Edges in Q + Facets in QF No
h-a PV hEHH Q) ac AQS) Edges in Qc + Facets™ in QF No
h-p-a  pv  heEHHAS) ac AQm) Edges in €, ¢ + Nodes' in Q%,c + Facets in No
h-¢-b pv hEHGQ), beE (H3(Om))? Edges in Q2 + Nodes in 2 + Volumes (x3) in Qm No
a-j p,v  ac€A),je A) Edges (x2) in Q. + Facets in QF No
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https://gitlab.onelab.info/life-hts/life-hts/-/tree/master/magnet

o LiEGE
Hands-on: 3D HTS magnet motor pole

Current density in the bulk
during magnetizing pulse
and relaxation

[J. Dular et al. IEEE Trans.
Mag. (2022)]

HTS loss (J) # DOFs # iterations Time/it. Total time

h 6.35 35,532 4,057 3.3s 3h42
h-¢ 6.36 12,172 3,937 1.4s 1h33
a 6.38 29,010 2,955 3.1s 2h33
a 6.39 26,964 3,147 2.1s 1h48
h-a 6.31 32,045 1,124 2.7s 0h50
h-¢-a 6.33 15,776 1,108 2.1s 0h39
h-¢-b 6.37 20,821 1,104 3.2s 0h58
a-j 6.34 36,019 2,225 3.6s 2h15
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Shi

Improving HTS magnetic shields with a
soft ferromagnetic material

elding an axial field

with a HTS tube

O

= = NN W W
o oo O O
T T

Magnetic flux density
inside the tube (mT)

=
T T

——
SF(8,8,)

10

1

125 14 15 16 17 18 15
Applied magnetic flux density (m;g.'

/

/

L N

[Lousberg

L L s L s L
0 5 10 15 20 25 30 35 40

Applied magnetic flux density B, (mT)

et al., TAS (2010)]

Shielding with an additional

ferromagnetic tube

00

{11~ No Ferro (2) - Ferro In (3) - Ferro Out

- ' ™
1000 \\\ \
oo @ )
‘S\m
\ W’

52mm

X

) H Rinn

Chs] “EARARR
f I £9900g0000dnnnnhannad
10 15 20 25 30 35 a0
Applied magnetic flux density (mT)
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Protecting a bulk HTS against crossed-

field demagnetisation with a ferromagnetic layer

Sequence of applied fields

FM
SC

=)
5=

axial B, Hall probe

-

1mm
5mm

1mm
5mm

Current distribution in the bulk with a
ferromagnetic top layer (u,. = 10, 100)

Bcrossed q

[Fagnard et al., SUST (2016)]
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Magnetic shielding

in inhomogeneous fields

[MA/mzl

J(B)

adll

i

[Hogan et al., SUST (2018)]
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Magnetic shielding,
bulk superconducting cylinders and caps

Tracking stray fields in composite shields
Induced currents vs. geometries

- > e
e
TuBE T Disk
TUBE

OBTURATED [ FUSED J (; FULLCAP (b) FUSED TUBE

=t B
el
gp D Bapp —
TRAI:SE\IIdERSE @ — Cﬂ
00 =

B for Bapp =3 mT
203 %e03  4em

5003 Be0d
]

[Fagnard et al., SUST (2019)]
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Critical states in stacked Niobium films

Raising field stage
Peculiar patterns of discontinuity lines in & &

stacks of Nb films Y
5o, arl ll {

Wl sio. td | |
‘A 440 480 520 352 459 566
) | R |
i B(G) B(G)
L
L =200 um, d =t = 300 nm Decreasing field stage

-134 284 190

B(G) B(G)

Needs to include a genuine
J.(B)-dependence

[Burger et al., SUST (2019)]

108



w * LIEGE .. .
& vniversie Critical states in the presence of a

ratchet pinning potential

Model: an anisotropic pinning force

Experiment: rotation of the central
reproduces the result

discontinuity line in the decreasing

field stage, after magnetization
| R
U(Uflyce:,dU/dy easy
hjﬁ
Y | — |
277_ 336 —395 029_ 137 _2“

/J()Ha =3.11mT ,uoHa =1mT
— | —

L. — —
247 -0.78 045 168

poH, =075 mT  poH, =0mT

[Motta et al., Phys. Rev. B (2022)]
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& i Rotating HTS motor

Pulse magnetization (h-a-formulation)

Ip, () = —Ic, (1) = £ Imax £ exp (1 —t/7),1a, (¢) =0

T

Stator

02

Magnetization (T)

o 02 o 04
Time (s)

3-phase (A-B-C') motor mode (a-formulation)

IAi (t) = £ Imax sin(wt)

05

IBi (t) =
+ I'max sin(wt + 27/3)
IC:E (t) =

+ Imax sin(wt — 27/3)

8000

g 6000
4000

[HTS motors School (2020)]

o
El
=
S 2000
=

0

0 20 40 60
Angle (deg)
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2D axisymmetric model of
moving bulk superconductors

Experiment

a) b) c)

L B >
‘,1”5

0 5 10 15 20 25 30 35 40
Simulation
25

J= [Am~?]
-1.96e+08  -1.58¢+08 -1.19¢+08  -8.1e+07  -4.27e+07 -4.37e+06  3.39¢+07  7.23e+07  1.11e+08  1.49e+08  1.87e+08
—— L e—

0 5 10 15 20 25 30 35 40
d [mm)]

[M. Houbart et al., SUST (in press)]
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Coil of HTS Tapes

h-a formulation with thermal coupling; tapes in parallel, series or end-coupled

Current redistribution phenomena for current-driven tapes

connected in parallel

_ . T =const. = 10K
Eotfo- AT e oL £ --fom T
z = le0k
g1 g1
5 5
° |—T1—T2—T3_T4 o
0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
x Time t (s) Timet (s)
~ 80
< C:: - -~ T3, T = const.
= 20 —_— T —T2—T3—T4 = 60 - - - T4,T = const.
E § 40 ——T3,T = var.
2‘.’_ 15 2 20 —— T4, T = var.
5 k2
z & =
10 0 o ST m o=
Nom (1) 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
oz ose Timet (s)

Timet (s)

Good agreement with reference results from COMSOL

[E. Schnaubelt et al. (2021)]
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Summary

e Overview of finite element formulations for high-temperature
superconductors
e “Simple"” formulations: h-¢-formulation , a-v-formulation
e Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of
nonlinear constitutive law
e For pure HTS problems, use h-¢-formulation with Newton-Raphson
e Adaptive time-stepping a must

114



w # LIEGE

université

Summary

e Overview of finite element formulations for high-temperature
superconductors

e “Simple"” formulations: h-¢-formulation , a-v-formulation

e Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of
nonlinear constitutive law

e For pure HTS problems, use h-¢-formulation with Newton-Raphson
e Adaptive time-stepping a must

e Mixed formulations: h(-¢)-a-formulation , t-a-formulation

e Useful for hybrid systems with ferromagnetic materials
e Should be discretized with caution to ensure well-posedness
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e Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of
nonlinear constitutive law

e For pure HTS problems, use h-¢-formulation with Newton-Raphson
e Adaptive time-stepping a must

e Mixed formulations: h(-¢)-a-formulation , t-a-formulation
e Useful for hybrid systems with ferromagnetic materials
e Should be discretized with caution to ensure well-posedness

¢ All formulations available in open source Life-HTS toolkit, based on
ONELAB, Gmsh and GetDP
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Summary

e Overview of finite element formulations for high-temperature
superconductors

e “Simple"” formulations: h-¢-formulation , a-v-formulation

e Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of
nonlinear constitutive law

e For pure HTS problems, use h-¢-formulation with Newton-Raphson
e Adaptive time-stepping a must

e Mixed formulations: h(-¢)-a-formulation , t-a-formulation
e Useful for hybrid systems with ferromagnetic materials
e Should be discretized with caution to ensure well-posedness

¢ All formulations available in open source Life-HTS toolkit, based on
ONELAB, Gmsh and GetDP

e Several available or finding their way into commercial tools (e.g. COMSOL)
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Main references

e ONELAB website, with codes, examples, and tutorials: https://onelab.info
e Life-HTS website: http://www.life-hts.uliege.be

e Finite Element Formulations for Systems with High- Temperature Superconductors,
J. Dular, C. Geuzaine, and B. Vanderheyden, TAS 30 (2020) 8200113.

e On the Stability of Mixed Finite-Element Formulations for High-Temperature
Superconductors,
J. Dular, M. Harutyunyan, L. Bortot, S. Schéps, B. Vanderheyden, and C. Geuzaine, TAS
31 (2021) 8200412

e What Formulation Should One Choose for Modeling a 3D HTS Motor Pole with
Ferromagnetic Materials?,
J. Dular, K. Berger, C. Geuzaine, and B. Vanderheyden, IEEE Trans. Mag. (in press)
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Post-Scriptum

For fun, go to the

e Google Play Store (if you are on Android)

e Apple AppStore (if you are on iOS)
and download the ONELAB app: it contains a full-featured
version of Gmsh & GetDP

.. S0 you can impress your friends by solving finite element
problems with HTS on your smartphone!

aaaaa
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https://play.google.com/store/apps/details?id=org.geuz.onelab
https://itunes.apple.com/us/app/onelab/id845930897

o LiEGE

Thanks for your attention

D<A cgeuzaine@uliege.be
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