Overview of Numerical Approaches

Finite Element Formulations for High-Temperature Superconductors

C. Geuzaine, J. Dular and B. Vanderheyden

University of Liège, Institut Montefiore B28, 4000 Liège, Belgium

Third International School on Numerical Modelling for Applied Superconductivity
Saas-Fee, Switzerland, 6-10 June 2022

Some background

- I am a professor at the University of Liège in Belgium, where I lead a team of about 15 people in the Montefiore Institute (Electrical Engineering and Computer Science Department), at the intersection of applied math, electromagnetism and scientific computing

Some background

- I am a professor at the University of Liège in Belgium, where I lead a team of about 15 people in the Montefiore Institute (Electrical Engineering and Computer Science Department), at the intersection of applied math, electromagnetism and scientific computing
- Our research interests include modelling, analysis, algorithm development, and simulation for problems arising in various areas of engineering and science
- Current applications: electromagnetics, geophysics, biomedical problems

Some background

- I am a professor at the University of Liège in Belgium, where I lead a team of about 15 people in the Montefiore Institute (Electrical Engineering and Computer Science Department), at the intersection of applied math, electromagnetism and scientific computing
- Our research interests include modelling, analysis, algorithm development, and simulation for problems arising in various areas of engineering and science
- Current applications: electromagnetics, geophysics, biomedical problems
- We write quite a lot of codes, several released as open source software: Gmsh, GetDP, ...

Some background

- I am a professor at the University of Liège in Belgium, where I lead a team of about 15 people in the Montefiore Institute (Electrical Engineering and Computer Science Department), at the intersection of applied math, electromagnetism and scientific computing
- Our research interests include modelling, analysis, algorithm development, and simulation for problems arising in various areas of engineering and science
- Current applications: electromagnetics, geophysics, biomedical problems
- We write quite a lot of codes, several released as open source software: Gmsh, GetDP, ...
- Our toolkit for modelling superconductors: Life-HTS

Life-HTS

http://www.life-hts.uliege.be

- Life-HTS: Liège University finite element models for High-Temperature Superconductors
- Numerical models for systems that contain both superconducting and ferromagnetic materials

Life-HTS

http://www.life-hts.uliege.be

- Life-HTS: Liège University finite element models for High-Temperature Superconductors
- Numerical models for systems that contain both superconducting and ferromagnetic materials

More specifically:

- Transient analysis for calculating field maps, magnetization, eddy currents, losses, ...
- Stable schemes for dealing with nonlinear constitutive laws
- Includes formulations (e.g. $h(-\phi)-a$) for combining ferromagnetic and superconducting materials

University of Liège

Sart Tilman Campus

Montefiore Institute

The city of Liège

Life-HTS - Under the hood

Life-HTS is based on ONELAB (Open Numerical Engineering LABoratory), an interface to

- the mesh generator Gmsh (https://gmsh.info)
- the finite element solver GetDP (https://getdp.info)

transformer

induction heating

rotating machine

Open-source, available for Windows, macOS, Linux, iOS, Android
Download from https://onelab.info

Life-HTS - Under the hood

Some numbers:

- Gmsh and GetDP started in 1996, ONELAB in 2010
- About 500 k lines of $\mathrm{C}++$ code
- Released under the GNU GPL v2+ (free and open source)

Life-HTS - Under the hood

Some numbers:

- Gmsh and GetDP started in 1996, ONELAB in 2010
- About 500 k lines of $\mathrm{C}++$ code
- Released under the GNU GPL v2+ (free and open source)
- 3 main core developers; about 100 with ≥ 1 commit
- About 2,000 registered users on the development site https://gitlab.onelab.info

Life-HTS - Under the hood

Some numbers:

- Gmsh and GetDP started in 1996, ONELAB in 2010
- About 500k lines of C++ code
- Released under the GNU GPL v2+ (free and open source)
- 3 main core developers; about 100 with ≥ 1 commit
- About 2,000 registered users on the development site https://gitlab.onelab.info
- About 20,000 downloads per month (70\% Windows)
- About 1,000 citations per year on Google Scholar; Gmsh has become one of the most popular open source finite element mesh generators

Hands-on: a first example

2D and 3D model of twisted HTS wires
Launch $\boldsymbol{\perp}$, then open models/Superconductors/helix.pro

A Sketch of the Finite Element Method

A simple 1D boundary value problem

- Solve

$$
-\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)+b(x) u=f, \quad 0 \leq x \leq 1
$$

with

$$
a(x)=1+x, \quad b(x)=\frac{1}{1+x}, \quad f(x)=\frac{2}{1+x}
$$

and boundary conditions $u(0)=0$ and $u(1)=1$.

A simple 1D boundary value problem

- Solve

$$
-\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)+b(x) u=f, \quad 0 \leq x \leq 1
$$

with

$$
a(x)=1+x, \quad b(x)=\frac{1}{1+x}, \quad f(x)=\frac{2}{1+x},
$$

and boundary conditions $u(0)=0$ and $u(1)=1$.

- Solution

$$
u(x)=\frac{2 x}{1+x}
$$

Finite Element Method: step 1

- Approximate $u(x)$ in a finite dimensional space

$$
u_{m}(x)=\phi_{0}(x)+\sum_{\ell=1}^{m} \gamma_{\ell} \phi_{\ell}(x)
$$

with $\phi_{0}(x)=x$ such that $\phi_{0}(0)=0$ and $\phi_{0}(1)=1$, whereas

$$
\phi_{\ell}(0)=0, \quad \phi_{\ell}(1)=0, \quad \ell=1, \ldots, m .
$$

The linearly independent functions $\phi_{\ell}(x), \ell>0$ span an approximation space, \mathcal{H}_{m}^{0}, of dimension m.

Finite Element Method: step 2

- Define the residual

$$
r(x)=-\frac{d}{d x}\left(a(x) \frac{d u_{m}}{d x}\right)+b(x) u_{m}-f(x)
$$

and require $r(x)$ to be orthogonal to \mathcal{H}_{m}^{0}, i.e.

$$
\left(r, \phi_{k}\right)=0, \quad k=1, \ldots, m
$$

where $(u, v)=\int_{0}^{1} u(x) v(x) d x$.

Finite Element Method: step 2

- Define the residual

$$
r(x)=-\frac{d}{d x}\left(a(x) \frac{d u_{m}}{d x}\right)+b(x) u_{m}-f(x)
$$

and require $r(x)$ to be orthogonal to \mathcal{H}_{m}^{0}, i.e.

$$
\left(r, \phi_{k}\right)=0, \quad k=1, \ldots, m
$$

where $(u, v)=\int_{0}^{1} u(x) v(x) d x$. This gives, for $k=1, \ldots, m$:

$$
\sum_{\ell=0}^{m} \gamma_{\ell}\left(-\frac{d}{d x}\left(a(x) \frac{d \phi_{\ell}}{d x}\right), \phi_{k}\right)+\left(b(x) \phi_{\ell}, \phi_{k}\right)=\left(f(x), \phi_{k}\right),
$$

with $\gamma_{0}=1$.
université

Finite Element Method: steps 3 and 4

- Integrate by part to relax the differentiability requirements on ϕ_{k} and seek for a weak solution,

$$
\sum_{\ell=1}^{m} a_{k, \ell} \gamma_{\ell}=\left(f(x), \phi_{k}\right)-a_{k, 0}, \quad k=1, \ldots, m
$$

where

$$
a_{k, \ell}=\left(a(x) \frac{d \phi_{\ell}}{d x}, \frac{d \phi_{k}}{d x}\right)+\left(b(x) \phi_{\ell}, \phi_{k}\right) .
$$

Finite Element Method: steps 3 and 4

- Integrate by part to relax the differentiability requirements on ϕ_{k} and seek for a weak solution,

$$
\sum_{\ell=1}^{m} a_{k, \ell} \gamma_{\ell}=\left(f(x), \phi_{k}\right)-a_{k, 0}, \quad k=1, \ldots, m
$$

where

$$
a_{k, \ell}=\left(a(x) \frac{d \phi_{\ell}}{d x}, \frac{d \phi_{k}}{d x}\right)+\left(b(x) \phi_{\ell}, \phi_{k}\right) .
$$

- Choose functions ϕ_{k} with a restricted support. The resulting matrix elements $a_{k, \ell}$ vanish for most (k, ℓ) pairs.
A sparse system is obtained, which saves computational cost.

Numerical example

Function space: use piece-wise linear nodal functions (here, $m=3$)

Approximate solution:

université

Numerical example

Convergence when the mesh is refined:

Finite Element Method: summary

- Need a function space for the approximations u_{m},

$$
u_{m}(x)=\phi_{0}(x)+\sum_{\ell=1}^{m} \gamma_{\ell} \phi_{\ell}(x), \quad \text { with boundary conditions }
$$

- Impose $\left(r, \phi_{k}\right)=0$ in weak form for all ϕ_{k}, to get the linear system

$$
\boldsymbol{A x}=\boldsymbol{b}
$$

with

$$
\boldsymbol{A}_{k, \ell}=\left(a \frac{d \phi_{\ell}}{d x}, \frac{d \phi_{k}}{d x}\right)+\left(b \phi_{\ell}, \phi_{k}\right), \quad \boldsymbol{x}_{\ell}=\gamma_{\ell}, \quad \text { and } \quad \boldsymbol{b}_{k}=\left(f, \phi_{k}\right)
$$

Finite Element Method: summary

- Need a function space for the approximations u_{m},

$$
u_{m}(x)=\phi_{0}(x)+\sum_{\ell=1}^{m} \gamma_{\ell} \phi_{\ell}(x), \quad \text { with boundary conditions }
$$

- Impose $\left(r, \phi_{k}\right)=0$ in weak form for all ϕ_{k}, to get the linear system

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

with

$$
\boldsymbol{A}_{k, \ell}=\left(a \frac{d \phi_{\ell}}{d x}, \frac{d \phi_{k}}{d x}\right)+\left(b \phi_{\ell}, \phi_{k}\right), \quad \boldsymbol{x}_{\ell}=\gamma_{\ell}, \quad \text { and } \quad \boldsymbol{b}_{k}=\left(f, \phi_{k}\right)
$$

In Life-HTS, a problem is described by specifying the function space and the weak form equations

Finite Element Method with Life-HTS

- In practice, a text script (.pro file) contains the GetDP problem definition structure
- A finite element mesh is required as input, built by Gmsh from a geometrical description (script or CAD file)

Integration

Jacobian

See https://onelab.info/slides/onelab.pdf for details

Learning curve

Finite Element Formulations for High-Temperature Superconductors

With technical details related to the Life-HTS implementation

Simple finite element formulations
The $a-v$-formulation
The h - ϕ-formulation

```
Resolution techniques
    Time integration
    Linearization methods
    Comparison of the formulations
Mixed finite element formulations
    The }h(-\phi)\mathrm{ -a-formulation
    The t-a-formulation
```

Illustrations
Summary

References

Introduction

Objective: Present and analyze various finite element formulations for modelling HTS and their implementation in Life-HTS. We will follow the GetDP philosophy:

- we will focus on building the weak form,
- and exploit the flexible function space possibilities, specifically for global variables.
\Rightarrow We will cover some technical details.

Introduction

Objective: Present and analyze various finite element formulations for modelling HTS and their implementation in Life-HTS. We will follow the GetDP philosophy:

- we will focus on building the weak form,
- and exploit the flexible function space possibilities, specifically for global variables.
\Rightarrow We will cover some technical details.
Important remark: One does not have to deal with these details for running existing templates.

Details are however fundamental for investigating new models and/or understanding the code.

General framework: magneto-quasistatics

- We aim to solve Maxwell's equations in the magneto-quasistatic ("magnetodynamic") approximation

$$
\text { curl } \boldsymbol{h}=\boldsymbol{j}, \quad \text { curl } \boldsymbol{e}=-\partial_{t} \boldsymbol{b}, \quad \operatorname{div} \boldsymbol{b}=0,
$$

with

- \boldsymbol{h} the magnetic field (A/m),
- j the current density $\left(\mathrm{A} / \mathrm{m}^{2}\right)$,
- e the electric field $(\mathrm{V} / \mathrm{m})$, and
- \boldsymbol{b} the magnetic flux density (T),
while the displacement current $\partial_{t} \boldsymbol{d}$ is neglected

General framework: magneto-quasistatics

- We aim to solve Maxwell's equations in the magneto-quasistatic ("magnetodynamic") approximation

$$
\text { curl } \boldsymbol{h}=\boldsymbol{j}, \quad \text { curl } \boldsymbol{e}=-\partial_{t} \boldsymbol{b}, \quad \operatorname{div} \boldsymbol{b}=0,
$$

with

- \boldsymbol{h} the magnetic field (A/m),
- j the current density $\left(\mathrm{A} / \mathrm{m}^{2}\right)$,
- e the electric field $(\mathrm{V} / \mathrm{m})$, and
- \boldsymbol{b} the magnetic flux density (T),
while the displacement current $\partial_{t} \boldsymbol{d}$ is neglected
- Boundary conditions and constitutive laws relating \boldsymbol{b} to \boldsymbol{h} and \boldsymbol{e} to \boldsymbol{j} are needed to obtain a well-posed problem

Constitutive laws

1. High-temperature superconductors (HTS):

$$
\boldsymbol{e}=\rho(\|\boldsymbol{j}\|) \boldsymbol{j} \quad \text { and } \quad \boldsymbol{b}=\mu_{0} \boldsymbol{h}
$$

where the electrical resistivity is given as
[C.J.G. Plummer and J. E. Evetts, IEEE TAS 23 (1987) 1179]
[E. Zeldov et al., Appl. Phys. Lett. 56 (1990) 680]

Constitutive laws

2. Ferromagnetic materials (FM):

$$
\boldsymbol{b}=\mu(\boldsymbol{h}) \boldsymbol{h} \quad \text { and } \quad \boldsymbol{j}=\mathbf{0}
$$

Typical values (supra50):

- initial relative permeability $\mu_{r i}=1700$
- saturation magnetization

$$
\mu_{0} M=1.3 \mathrm{~T}
$$

Eddy currents are neglected

Constitutive laws

2. Ferromagnetic materials (FM):

$$
\boldsymbol{b}=\mu(\boldsymbol{h}) \boldsymbol{h} \quad \text { and } \quad \boldsymbol{j}=\mathbf{0}
$$

Typical values (supra50):

- initial relative permeability $\mu_{r i}=1700$
- saturation magnetization

$$
\mu_{0} M=1.3 \mathrm{~T}
$$

Eddy currents are neglected
3. Air:

$$
\boldsymbol{b}=\mu_{0} \boldsymbol{h} \quad \text { and } \quad \boldsymbol{j}=\mathbf{0} .
$$

Constitutive laws, extensions

One can also consider

- normal conductors and coils,
- permanent magnets,
- ferromagnetic materials with hysteresis (e.g. [K. Jacques, thesis (2018)])
- type-I superconductors (need a London length)

Boundary conditions and global variables

Domain Ω decomposed into:

- Ω_{c}, the conducting domain ($\Omega_{\mathrm{c}}=\cup_{i=1}^{N} \Omega_{\mathrm{c}_{i}}$),
- $\Omega_{\mathrm{c}}^{\mathrm{C}}$, the complementary non-conducting domain.

Boundary conditions:

1. Local conditions. On domain boundary $\partial \Omega=\Gamma$:

- $\boldsymbol{h} \times \boldsymbol{n}=\overline{\boldsymbol{h}} \times \boldsymbol{n}$, imposed on Γ_{h},
- $\boldsymbol{e} \times \boldsymbol{n}=\overline{\boldsymbol{e}} \times \boldsymbol{n}($ or $\boldsymbol{b} \cdot \boldsymbol{n}=\overline{\boldsymbol{b}} \cdot \boldsymbol{n})$, imposed on $\Gamma_{e}\left(=\Gamma \backslash \Gamma_{h}\right)$.
université

Boundary conditions and global variables

Domain Ω decomposed into:

- Ω_{c}, the conducting domain ($\Omega_{\mathrm{c}}=\cup_{i=1}^{N} \Omega_{\mathrm{c}_{\mathrm{i}}}$),
- $\Omega_{\mathrm{c}}^{\mathrm{C}}$, the complementary non-conducting domain.

Boundary conditions:

1. Local conditions. On domain boundary $\partial \Omega=\Gamma$:

- $\boldsymbol{h} \times \boldsymbol{n}=\overline{\boldsymbol{h}} \times \boldsymbol{n}$, imposed on Γ_{h},
- $\boldsymbol{e} \times \boldsymbol{n}=\overline{\boldsymbol{e}} \times \boldsymbol{n}$ (or $\boldsymbol{b} \cdot \boldsymbol{n}=\overline{\boldsymbol{b}} \cdot \boldsymbol{n}$), imposed on $\Gamma_{e}\left(=\Gamma \backslash \Gamma_{h}\right)$.

2. Global conditions. Either the applied current I_{i}, or voltage V_{i} is imposed (or a relation between them, not covered here) on each separate conducting region $\Omega_{c_{i}}$,

- $I_{i}=\bar{I}_{i}$, imposed for $i \in C_{I}$, a subset of $C=\{1, \ldots, N\}$,
- $V_{i}=\bar{V}_{i}$, imposed for $i \in C_{V}$, the complementary subset.
- Equations in Ω :

Summary

$$
\operatorname{div} \boldsymbol{b}=0, \quad \text { curl } \boldsymbol{h}=\boldsymbol{j}, \quad \text { curl } \boldsymbol{e}=-\partial_{t} \boldsymbol{b}
$$

- Constitutive laws:

$$
\boldsymbol{e}=\rho \boldsymbol{j}, \quad \boldsymbol{b}=\mu \boldsymbol{h} .
$$

- Boundary conditions:

$$
\begin{array}{r}
(\boldsymbol{h}-\overline{\boldsymbol{h}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{h}}=\mathbf{0}, \quad(\boldsymbol{e}-\overline{\boldsymbol{e}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{e}}=\mathbf{0} \\
I_{i}=\bar{I}_{i} \text { for } i \in C_{I}, \quad V_{i}=\bar{V}_{i} \text { for } i \in C_{V}
\end{array}
$$

université

Finite element formulations

Two classes of formulations:

- h-conform, e.g. h - ϕ-formulation,
- enforces the continuity of the tangential component of \boldsymbol{h},
- involves $\boldsymbol{e}=\rho \boldsymbol{j}$ and $\boldsymbol{b}=\mu \boldsymbol{h}$,
- much used for HTS modelling.

Finite element formulations

Two classes of formulations:

- h-conform, e.g. h - ϕ-formulation,
- enforces the continuity of the tangential component of \boldsymbol{h},
- involves $\boldsymbol{e}=\rho \boldsymbol{j}$ and $\boldsymbol{b}=\mu \boldsymbol{h}$,
- much used for HTS modelling.
- b-conform, e.g. a-v-formulation,
- enforces the continuity of the normal component of \boldsymbol{b},
- involves $\boldsymbol{j}=\sigma \boldsymbol{e}$ and $\boldsymbol{h}=\nu \boldsymbol{b},\left(\sigma=\rho^{-1}, \nu=\mu^{-1}\right)$
- much used in electric rotating machine design.

Nonlinear constitutive laws involved in opposite ways \Rightarrow very different numerical behaviors are expected... and observed.

Differential forms

We discretize the fields as differential k-forms. The exterior derivative d applied on a k-form gives a $k+1$-form:

- 0-form, H^{1}, e.g. ϕ (scalar magnetic potential), v (scalar electric potential):
- continuous scalar fields (conform),
- generated by nodal functions ψ_{n}, value (point evaluation) at node $\tilde{n}=\delta_{n \tilde{n}}$,
- exterior derivative is grad .

Differential forms

We discretize the fields as differential k-forms. The exterior derivative d applied on a k-form gives a $k+1$-form:

- 0 -form, H^{1}, e.g. ϕ (scalar magnetic potential), v (scalar electric potential):
- continuous scalar fields (conform),
- generated by nodal functions ψ_{n}, value (point evaluation) at node $\tilde{n}=\delta_{n \tilde{n}}$,
- exterior derivative is grad .
- 1-form, $H(\mathbf{c u r l})$, e.g. $\boldsymbol{h}, \boldsymbol{e}, \boldsymbol{a}$ (magnetic vector potential), \boldsymbol{t} (electric vector potential):
- vector fields with continuous tangential trace (curl-conform),
- generated by edge functions ψ_{e}, circulation (line integral) along edge \tilde{e} $=\delta_{e \tilde{e}}$,
- exterior derivative is curl .

Differential forms

We discretize the fields as differential k-forms. The exterior derivative d applied on a k-form gives a $k+1$-form:

- 0-form, H^{1}, e.g. ϕ (scalar magnetic potential), v (scalar electric potential):
- continuous scalar fields (conform),
- generated by nodal functions ψ_{n}, value (point evaluation) at node $\tilde{n}=\delta_{n \tilde{n}}$,
- exterior derivative is grad .
- 1-form, $H(\mathbf{c u r l})$, e.g. $\boldsymbol{h}, \boldsymbol{e}, \boldsymbol{a}$ (magnetic vector potential), \boldsymbol{t} (electric vector potential):
- vector fields with continuous tangential trace (curl-conform),
- generated by edge functions $\boldsymbol{\psi}_{e}$, circulation (line integral) along edge \tilde{e} $=\delta_{e \tilde{e}}$,
- exterior derivative is curl
- 2-form, $H(\mathbf{d i v})$, e.g. $\boldsymbol{b}, \boldsymbol{j}$:
- vector fields with continuous normal trace (div-conform),
- generated by facet functions $\boldsymbol{\psi}_{f}$, flux (surface integral) through facet \tilde{f} $=\delta_{f \tilde{f}}$,
- exterior derivative is div.

Differential forms: illustration

Lowest order edge functions (1-form) for a triangular finite element:

Their curl (2-form) are constant.

Differential forms: Tonti diagram

- We can summarize it all on a Tonti diagram:

$$
\begin{aligned}
& (\phi, \omega) \xrightarrow{\operatorname{grad}_{h}} \boldsymbol{h}(\boldsymbol{t}) \xrightarrow{\mathrm{curl}_{h}} \boldsymbol{j} \xrightarrow{\mathrm{div}_{h}} 0
\end{aligned}
$$

Differential forms: Tonti diagram

- We can summarize it all on a Tonti diagram:

- \boldsymbol{h}-conform formulations ($\boldsymbol{h}, \boldsymbol{h}-\phi, \boldsymbol{t}-\omega, \ldots$) satisfy the top exactly
- \boldsymbol{b}-conform formulations ($\boldsymbol{a}, \boldsymbol{a}-v, \ldots$) satisfy the bottom exactly

Simple finite element formulations
The a - v-formulation
The h - ϕ-formulation

Resolution techniques

Time integration
Linearization methods
Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$ - a-formulation
The t - a-formulation
Illustrations
Summary
References

Derivation of the $a-v$-formulation

Introduce the vector potential \boldsymbol{a}, and the electric potential v :

$$
\boldsymbol{b}=\operatorname{curl} \boldsymbol{a}, \quad \boldsymbol{e}=-\partial_{t} \boldsymbol{a}-\operatorname{grad} v .
$$

Derivation of the $a-v$-formulation

Introduce the vector potential \boldsymbol{a}, and the electric potential v :

$$
\boldsymbol{b}=\operatorname{curl} \boldsymbol{a}, \quad \boldsymbol{e}=-\partial_{t} \boldsymbol{a}-\operatorname{grad} v
$$

Define \boldsymbol{a} in Ω and v in $\Omega_{\text {c }}$ (discontinuous across electrodes):

- \boldsymbol{a} as a 1 -form and v as a 0-form,
- satisfying the local $\mathrm{BC}(\boldsymbol{e}-\overline{\boldsymbol{e}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{e}}=\mathbf{0}$,
- and global BC $V_{i}=\bar{V}_{i}$ for $i \in C_{V}$ (i.e. the circulation of $-\operatorname{grad} v$ around conducting domain $\Omega_{\mathrm{c}_{i}}$ is equal to \bar{V}_{i}).
This strongly satisfies

$$
\operatorname{div} \boldsymbol{b}=0, \quad \text { curl } \boldsymbol{e}=-\partial_{t} \boldsymbol{b}, \quad(\boldsymbol{e}-\overline{\boldsymbol{e}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{e}}=\mathbf{0}, \quad V_{i}=\bar{V}_{i} \text { for } i \in C_{V}
$$

Derivation of the $a-v$-formulation

Introduce the vector potential \boldsymbol{a}, and the electric potential v :

$$
\boldsymbol{b}=\operatorname{curl} \boldsymbol{a}, \quad \boldsymbol{e}=-\partial_{t} \boldsymbol{a}-\operatorname{grad} v
$$

Define \boldsymbol{a} in Ω and v in Ω_{c} (discontinuous across electrodes):

- \boldsymbol{a} as a 1 -form and v as a 0-form,
- satisfying the local BC $(\boldsymbol{e}-\overline{\boldsymbol{e}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{e}}=\mathbf{0}$,
- and global BC $V_{i}=\bar{V}_{i}$ for $i \in C_{V}$ (i.e. the circulation of $-\operatorname{grad} v$ around conducting domain $\Omega_{\mathrm{c}_{i}}$ is equal to \bar{V}_{i}).
This strongly satisfies

$$
\operatorname{div} \boldsymbol{b}=0, \quad \text { curl } \boldsymbol{e}=-\partial_{t} \boldsymbol{b}, \quad(\boldsymbol{e}-\overline{\boldsymbol{e}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{e}}=\mathbf{0}, \quad V_{i}=\bar{V}_{i} \text { for } i \in C_{V}
$$

What remains is:

$$
\text { curl } \boldsymbol{h}=\boldsymbol{j}, \quad \boldsymbol{j}=\sigma \boldsymbol{e}, \quad \boldsymbol{h}=\nu \boldsymbol{b}, \quad(\boldsymbol{h}-\overline{\boldsymbol{h}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{h}}=\mathbf{0}, \quad I_{i}=\bar{I}_{i} \text { for } i \in C_{I} .
$$

Choosing a and v

We still have freedom on the choice of \boldsymbol{a} and v. Indeed, for any scalar field ϕ, the substitution

$$
\begin{aligned}
\boldsymbol{a} & \rightarrow \boldsymbol{a}+\int_{0}^{t} \operatorname{grad} \phi d t \\
v & \rightarrow v-\phi
\end{aligned}
$$

lets the physical solution, b and e, unchanged.
We present here one possibility for gauging \boldsymbol{a} and v in:
(1) 2 D case with in-plane \boldsymbol{b}, (2) 3D case.

Choosing a and v

We still have freedom on the choice of \boldsymbol{a} and v. Indeed, for any scalar field ϕ, the substitution

$$
\begin{aligned}
& \boldsymbol{a} \rightarrow \boldsymbol{a}+\int_{0}^{t} \operatorname{grad} \phi d t \\
& v \rightarrow v-\phi
\end{aligned}
$$

lets the physical solution, \boldsymbol{b} and \boldsymbol{e}, unchanged.
We present here one possibility for gauging \boldsymbol{a} and v in:
(1) 2 D case with in-plane \boldsymbol{b}, (2) 3D case.

In both cases, one global shape function $v_{d, i}$ in each $\Omega_{\mathrm{c}_{i}}$ is sufficient for representing a unit voltage in $\Omega_{\mathrm{c}_{i}}$, s.t. we have:

$$
\operatorname{grad} v=\sum_{i=1}^{N} V_{i} \operatorname{grad} v_{d, i} .
$$

Choosing \boldsymbol{a} and v, cont'd

$$
\boldsymbol{b}=\mathbf{c u r l} \boldsymbol{a}, \quad \boldsymbol{e}=-\partial_{t} \boldsymbol{a}-\operatorname{grad} v, \quad \operatorname{grad} v=\sum_{i=1}^{N} V_{i} \operatorname{grad} v_{d, i}
$$

1. 2 D with in-plane \boldsymbol{b} :

- We choose \boldsymbol{a} along $\hat{\boldsymbol{z}}$,

$$
\boldsymbol{a}=\sum_{n \in \Omega} a_{n} \psi_{n} \hat{\boldsymbol{z}},
$$

with ψ_{n} the nodal function of node n. NB: It is a Coulomb gauge, as $\operatorname{div} \boldsymbol{a}=0$

- $\operatorname{grad} v_{d, i}$ is along $\hat{\boldsymbol{z}}$ and constant $(=1)$ in each $\Omega_{\mathrm{c}_{i}}$. (V is a voltage per unit length.)

- Remaining constant fixed by BC.

Life-HTS a in 2D, with in-plane b

$$
\boldsymbol{a}=\sum_{n \in \Omega} a_{n} \psi_{n} \hat{\boldsymbol{z}}
$$

```
FunctionSpace {
    // Perpendicular edge functions (1-form field in the out-of-plane direction)
    { Name a_space_2D; Type Form1P;
        BasisFunction {
            { Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
                Support Omega_a_AndBnd; Entity NodesOf[All]; }
        }
        Constraint {
            { NameOfCoef an; EntityType NodesOf; NameOfConstraint a; }
        }
    }
}
```


Life-HTS grad v in 2D, with in-plane b

$$
\operatorname{grad} v=\sum_{i=1}^{N} V_{i} \operatorname{grad} v_{d, i}=\sum_{i=1}^{N} V_{i} \hat{z}_{i}
$$

```
FunctionSpace {
    { Name grad_v_space_2D; Type Form1P;
        BasisFunction {
            // Constant per region and along z. Corresponds to a voltage per unit length
            { Name zi; NameOfCoef Vi; Function BF_RegionZ;
                Support Region[OmegaC]; Entity Region[OmegaC]; }
        }
        GlobalQuantity {
            // Associated global quantities to be used in the formulation
            { Name V; Type AliasOf; NameOfCoef Vi; }
            { Name I; Type AssociatedWith; NameOfCoef Vi; }
        }
        Constraint {
            { NameOfCoef V; EntityType Region; NameOfConstraint Voltage; }
            { NameOfCoef I; EntityType Region; NameOfConstraint Current; }
        }
    }
}
```


Choosing a and v

2. 3 D :

- In Ω_{c}, define $v_{d, i}$ to be zero everywhere except on a transition layer in $\Omega_{\mathrm{c}_{i}}$: layer of one element, on one side of the electrodes, in each $\Omega_{\mathrm{c}_{i}}(v$ has no longer a physical interpretation),

$$
\operatorname{grad} v=\sum_{i=1}^{N} V_{i} \operatorname{grad} v_{d, i} .
$$

- \boldsymbol{a} is generated by edge functions.
- $\ln \Omega_{\mathrm{c}}, \boldsymbol{a}$ is unique, e.g. outside the transition layer $\boldsymbol{e}=-\partial_{t} \boldsymbol{a}$ (reduced vector potential).
- $\ln \Omega_{\mathrm{c}}^{\mathrm{C}}, \boldsymbol{a}$ is made unique with a co-tree gauge...

Co-tree gauge for a in $\Omega_{\mathrm{c}}^{\mathrm{C}}$ in 3D

- In $\Omega_{\mathrm{c}}^{\mathrm{C}}$, only curl $\boldsymbol{a}=\boldsymbol{b}$ has a physical meaning. One degree of freedom (DoF) per facet is sufficient (and necessary), instead of one DoF per edge.
- The support entities of the 1-form \boldsymbol{a} are the edges.
- To associate a unique edge to each facet: consider only edges in a co-tree, i.e. the complementary of a tree:

$$
\boldsymbol{a}=\sum_{e \in \Omega_{\mathrm{c}} \cup\left(\text { co-tree in } \Omega_{\mathrm{c}}^{\mathrm{C}}\right)} a_{e} \boldsymbol{\psi}_{e}
$$

NB: Be careful on the conducting domain boundary $\partial \Omega_{c}$, no gauge there because \boldsymbol{a} is already unique.

Life-HTS a in 3D

$$
\boldsymbol{a}=\sum_{e \in \Omega_{\mathrm{c}} \cup\left(\text { co-tree in } \Omega_{\mathrm{c}}^{\mathrm{C}}\right)} a_{e} \psi_{e}
$$

```
FunctionSpace {
    { Name a_space_3D; Type Form1;
        BasisFunction {
            // Usual edge functions everywhere (decomposed to handle BndOmegaC) correctly
            { Name psie ; NameOfCoef ae ; Function BF_Edge ;
                Support Omega_a_AndBnd ; Entity EdgesOf[ All, Not BndOmegaC ] ; }
            { Name psie2 ; NameOfCoef ae2 ; Function BF_Edge ;
                Support Omega_a_AndBnd ; Entity EdgesOf [ BndOmegaC ] ; }
        }
        Constraint {
            { NameOfCoef ae; EntityType EdgesOf; NameOfConstraint a; }
            { NameOfCoef ae2; EntityType EdgesOf; NameOfConstraint a; }
            { NameOfCoef ae; EntityType EdgesOfTreeIn; EntitySubType StartingOn;
                NameOfConstraint GaugeCondition; }
        }
    }
}
Constraint {
    { Name GaugeCondition ; Type Assign ;
        Case {
            // Zero on edges of a tree in Omega_CC, containing a complete tree on Surf_a_noGauge
            {Region Omega_a_OmegaCC ; SubRegion Surf_a_noGauge; Value 0.; }
        }
    }
}
```


Life-HTS v in 3D

$$
\operatorname{grad} v=\sum_{i=1}^{N} V_{i} \operatorname{grad} v_{d, i}
$$

```
FunctionSpace{
    { Name grad_v_space_3D; Type Form1;
        BasisFunction {
            // Global unit voltage shape function. Support limited to only one side of the electrodes
            { Name vi; NameOfCoef Vi; Function BF_GradGroupOfNodes;
                Support ElementsOf[OmegaC, OnPositiveSideOf Electrodes];
                Entity GroupsOfNodesOf[Electrodes]; }
        }
        GlobalQuantity {
            // Associated global quantities to be used in the formulation.
            { Name V; Type AliasOf; NameOfCoef Vi; }
            { Name I; Type AssociatedWith; NameOfCoef Vi; }
        }
        Constraint {
            { NameOfCoef V;
                EntityType GroupsOfNodesOf; NameOfConstraint Voltage; }
            { NameOfCoef I;
                EntityType GroupsOfNodesOf; NameOfConstraint Current; }
        }
    }
}
```


Choosing a and v, other possibilities

Various alternatives can also be considered in 3D:

- Distributed support for v, via a preliminary FE resolution [S. Schöps, et al., COMPEL (2013)]
- Coulomb gauge in $\Omega_{\mathrm{c}}^{\mathrm{C}}$ via a Lagrange multiplier [Creusé, et al., Computers \& Mathematics with Applications, 77(6), 1563-1582 (2019)]
université
Derivation of the $a-v$-formulation, cont'd
What remains is:

$$
\underbrace{\operatorname{curl} \boldsymbol{h}=\boldsymbol{j}, \quad \boldsymbol{j}=\sigma \boldsymbol{e}, \quad \overbrace{\boldsymbol{h}=\nu \boldsymbol{b}}, \quad(\boldsymbol{h}-\overline{\boldsymbol{h}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{h}}=\mathbf{0}}_{\Rightarrow \text { curl }(\nu \text { curl } \boldsymbol{a})=-\sigma\left(\partial_{t} \boldsymbol{a}+\operatorname{grad} v\right) \circledast}, \quad \underbrace{I_{i}=\bar{I}_{i} \text { for } i \in C_{I}}_{\oplus}
$$

Derivation of the $a-v$-formulation, cont'd

What remains is:

$$
\underbrace{\text { curl } \boldsymbol{h}=\boldsymbol{j}, \quad \boldsymbol{j}=\sigma \boldsymbol{e}, \quad \overbrace{\boldsymbol{h}=\nu \boldsymbol{b}}, \quad(\boldsymbol{h}-\overline{\boldsymbol{h}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{h}}=\mathbf{0}}_{\Rightarrow \operatorname{curl}(\nu \text { curl } \boldsymbol{a})=-\sigma\left(\partial_{t} \boldsymbol{a}+\operatorname{grad} v\right) \circledast}, \stackrel{(\otimes)}{I_{i}=\bar{I}_{i} \text { for } i \in C_{I}}
$$

- Multiply \circledast by a test function \boldsymbol{a}^{\prime}, in the same space than \boldsymbol{a} but with homogeneous BC , and integrate over Ω,

$$
\begin{gathered}
\left(\text { curl }(\nu \text { curl } \boldsymbol{a}), \boldsymbol{a}^{\prime}\right)_{\Omega}+\left(\sigma\left(\partial_{t} \boldsymbol{a}+\text { grad } v\right), \boldsymbol{a}^{\prime}\right)_{\Omega_{\mathrm{c}}}=0 \\
\Rightarrow \quad\left(\nu \text { curl } \boldsymbol{a}, \text { curl } \boldsymbol{a}^{\prime}\right)_{\Omega}-(\underbrace{\nu \text { curl } \boldsymbol{a} \times \boldsymbol{n}}_{\text {Neumann BC © }(2)}, \boldsymbol{a}^{\prime})_{\Gamma_{h}} \\
+\left(\sigma \partial_{t} \boldsymbol{a}, \boldsymbol{a}^{\prime}\right)_{\Omega_{\mathrm{c}}}+\left(\sigma \text { grad } v, \boldsymbol{a}^{\prime}\right)_{\Omega_{\mathrm{c}}}=0
\end{gathered}
$$

Derivation of the $a-v$-formulation, cont'd

What remains is:

$$
\underbrace{\text { curl } \boldsymbol{h}=\boldsymbol{j}, \quad \boldsymbol{j}=\sigma \boldsymbol{e}, \quad \overbrace{\boldsymbol{h}=\nu \boldsymbol{b}}, \quad(\boldsymbol{h}-\overline{\boldsymbol{h}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{h}}=\mathbf{0}}_{\Rightarrow \operatorname{curl}(\nu \text { curl } \boldsymbol{a})=-\sigma\left(\partial_{t} \boldsymbol{a}+\operatorname{grad} v\right) \circledast}, \stackrel{(2)}{\overline{0}}, \underbrace{I_{i}=\bar{I}_{i} \text { for } i \in C_{I}}_{\oplus}
$$

- Multiply \circledast by a test function grad v^{\prime}, and integrate over Ω_{c},

$$
\begin{gathered}
\left(\text { curl }(\nu \text { curl } \boldsymbol{a}), \mathbf{g r a d} v^{\prime}\right)_{\Omega_{\mathrm{c}}}+\left(\sigma \partial_{t} \boldsymbol{a}, \mathbf{g r a d} v^{\prime}\right)_{\Omega_{\mathrm{c}}} \\
+\left(\sigma \text { grad } v, \mathbf{g r a d} v^{\prime}\right)_{\Omega_{\mathrm{c}}}=0 \\
\Rightarrow \quad-\underbrace{\left(\nu \operatorname{curl} \boldsymbol{a} \times \boldsymbol{n}, \operatorname{grad} v^{\prime}\right)_{\partial \Omega_{\mathrm{c}}}}_{\oplus) \ldots}+\left(\sigma \partial_{t} \boldsymbol{a}, \operatorname{grad} v^{\prime}\right)_{\Omega_{\mathrm{c}}} \\
+\left(\sigma \text { grad } v, \operatorname{grad} v^{\prime}\right)_{\Omega_{\mathrm{c}}}=0
\end{gathered}
$$

Derivation of the $a-v$-formulation, cont'd

- The surface term simplifies

$$
\begin{aligned}
\left(\nu \text { curl } \boldsymbol{a} \times \boldsymbol{n}, \text { grad } v^{\prime}\right)_{\partial \Omega_{\mathrm{c}}} & =\left(\boldsymbol{h} \times \boldsymbol{n}, \text { grad } v^{\prime}\right)_{\partial \Omega_{\mathrm{c}}} \\
& =\left(\boldsymbol{h}, \boldsymbol{n} \times \mathbf{g r a d} v^{\prime}\right)_{\partial \Omega_{\mathrm{c}}} \\
& =\left(\boldsymbol{h}, \boldsymbol{n} \times \boldsymbol{g r a d} v^{\prime}\right)_{\partial(\text { transition layer })} \\
& \left.=I V^{\prime}=\bar{I} V^{\prime} \quad(\text { Ampère's law }+\oplus)\right)
\end{aligned}
$$

$a-v$-formulation

Finally, the $a-v$-formulation amounts to find \boldsymbol{a} and v in the chosen function spaces such that, $\forall \boldsymbol{a}^{\prime}$ and v^{\prime},

$$
\begin{aligned}
& \left(\nu \text { curl } \boldsymbol{a}, \text { curl } \boldsymbol{a}^{\prime}\right)_{\Omega}-\left(\overline{\boldsymbol{h}} \times \boldsymbol{n}_{\Omega}, \boldsymbol{a}^{\prime}\right)_{\Gamma_{h}} \\
& \quad+\left(\sigma \partial_{t} \boldsymbol{a}, \boldsymbol{a}^{\prime}\right)_{\Omega_{\mathrm{c}}}+\left(\sigma \operatorname{grad} v, \boldsymbol{a}^{\prime}\right)_{\Omega_{\mathrm{c}}}=0, \\
& \quad\left(\sigma \partial_{t} \boldsymbol{a}, \operatorname{grad} v^{\prime}\right)_{\Omega_{\mathrm{c}}}+\left(\sigma \operatorname{grad} v, \operatorname{grad} v^{\prime}\right)_{\Omega_{\mathrm{c}}}=\sum_{i=1}^{N} I_{i} \mathcal{V}_{i}\left(v^{\prime}\right),
\end{aligned}
$$

with $I_{i}=\bar{I}_{i}$ for $i \in C_{I}$, and $\mathcal{V}_{i}\left(v^{\prime}\right)=V_{i}^{\prime}$ (i.e. the DoF associated with the unit voltage function $\left.v_{d, i}\right)$.

$a-v$-formulation - Interpretation

When the test function $v^{\prime}=v_{d, i}$ is chosen $\left(\mathcal{V}_{i}\left(v_{d, i}\right)=1\right)$, the second equation reads

$$
\begin{aligned}
& \left(\sigma\left(\partial_{t} \boldsymbol{a}+\operatorname{grad} v\right), \operatorname{grad} v_{d, i}\right)_{\Omega_{\mathrm{c}}} & =I_{i} \\
\Rightarrow \quad & \left(\sigma \boldsymbol{e},-\operatorname{grad} v_{d, i}\right)_{\Omega_{\mathrm{c}}} & =I_{i} .
\end{aligned}
$$

"Flux of $\sigma \boldsymbol{e}(=\boldsymbol{j})$ averaged over a transition layer $=$ total current".

NB: The flux of $\sigma \boldsymbol{e}$ depends on the chosen cross-section as $\sigma \boldsymbol{e}$ is not a 2 -form (as j should be). Conservation of current is weakly satisfied.

Simple finite element formulations
The a - v-formulation
The h - ϕ-formulation

```
Resolution techniques
    Time integration
    Linearization methods
    Comparison of the formulations
Mixed finite element formulations
    The h(-\phi)-a-formulation
    The t-a-formulation
Illustrations
Summary
```

References

Derivation of the h - ϕ-formulation

Choose \boldsymbol{h} such that

- it is a 1 -form,
- $(\boldsymbol{h}-\overline{\boldsymbol{h}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{h}}=\mathbf{0}$,
- curl $\boldsymbol{h}=\mathbf{0}$ in $\Omega_{\mathrm{c}}^{\mathrm{C}}$ (this is the key point),
- and express \boldsymbol{j} directly as $\boldsymbol{j}=\mathbf{c u r l} \boldsymbol{h}$ in Ω_{c}, with \boldsymbol{h} generated by edge functions.

Derivation of the h - ϕ-formulation

Choose h such that

- it is a 1 -form,
- $(\boldsymbol{h}-\overline{\boldsymbol{h}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{h}}=\mathbf{0}$,
- curl $\boldsymbol{h}=\mathbf{0}$ in $\Omega_{\mathrm{c}}^{\mathrm{C}}$ (this is the key point),
- and express \boldsymbol{j} directly as $\boldsymbol{j}=\mathbf{c u r l} \boldsymbol{h}$ in Ω_{c}, with \boldsymbol{h} generated by edge functions.
What are the functions \boldsymbol{h} that satisfy curl $\boldsymbol{h}=\mathbf{0}$ in $\Omega_{\mathrm{c}}^{\mathrm{C}}$?
\Rightarrow Surely gradients of scalar functions!
- If $\boldsymbol{h}=\operatorname{grad} \phi$, then curl $\boldsymbol{h}=\mathbf{0}, \forall \phi$.
- However, choosing only $\boldsymbol{h}=\operatorname{grad} \phi$ does not allow to represent a net current intensity (necessary if $\Omega_{\mathrm{c}}^{\mathrm{C}}$ is multiply connected).

Derivation of the h - ϕ-formulation, cont'd

- One global shape function \boldsymbol{c}_{i} for each $\Omega_{\mathrm{c}_{i}}$ is enough for representing a unit current intensity in $\Omega_{\mathrm{c}_{i}}$.
- As with the $a-v$-formulation, we have freedom on the choice of these functions. The only constraint is that

$\ln \Omega_{\mathrm{c}}^{\mathrm{C}}$, we therefore have

$$
\boldsymbol{h}=\boldsymbol{\operatorname { g r a d }} \phi+\sum_{i=1}^{N} I_{i} \boldsymbol{c}_{i} .
$$

Choice of the global functions

One possibility for choosing the \boldsymbol{c}_{i} functions, the cut functions:

- Introduce cuts to make $\Omega_{\mathrm{c}}^{\mathrm{C}}$ simply connected.
- Define the \boldsymbol{c}_{i} on transition layers: layer of one element on one side of the cut, for each cut.
- $\boldsymbol{c}_{i}=\operatorname{grad} \phi_{d, i}$, with $\phi_{d, i}$ a discontinuous scalar potential.

Choice of the global functions

One possibility for choosing the \boldsymbol{c}_{i} functions, the cut functions:

- Introduce cuts to make $\Omega_{\mathrm{c}}^{\mathrm{C}}$ simply connected.
- Define the \boldsymbol{c}_{i} on transition layers: layer of one element on one side of the cut, for each cut.
- $\boldsymbol{c}_{i}=\operatorname{grad} \phi_{d, i}$, with $\phi_{d, i}$ a discontinuous scalar potential.

NB: Gmsh has an automatic cohomology solver for generating cuts in complicated geometries (e.g. helix windings)
[M. Pellikka, et al. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214 (2013)]

Summary and shape function supports

In Ω we have

$$
\boldsymbol{h}=\sum_{n \in \Omega_{\mathrm{C}}^{\mathrm{C}}} \phi_{n} \operatorname{grad} \psi_{n}+\sum_{e \in \Omega_{\mathrm{c}} \backslash \partial \Omega_{\mathrm{c}}} h_{e} \boldsymbol{\psi}_{e}+\sum_{i=1}^{N} I_{i} \boldsymbol{c}_{i} .
$$

Gradient of node functions.

Classical edge functions.
Global cut function. Net current $\neq 0$.

Note: Gray areas $=\Omega_{\mathrm{c}}$.

Life-HTS h in 2D or 3D

$$
\boldsymbol{h}=\sum_{n \in \Omega_{\mathrm{C}}^{\mathrm{C}}} \phi_{n} \text { grad } \psi_{n}+\sum_{e \in \Omega_{\mathrm{c}} \backslash \partial \Omega_{\mathrm{c}}} h_{e} \psi_{e}+\sum_{i=1}^{N} I_{i} \boldsymbol{c}_{i}
$$

```
FunctionSpace{
    { Name h_space; Type Form1;
        BasisFunction {
            // Nodal functions
            { Name gradpsin; NameOfCoef phin; Function BF_GradNode;
                Support Omega_h_OmegaCC_AndBnd; Entity NodesOf[OmegaCC]; }
            { Name gradpsin; NameOfCoef phin2; Function BF_GroupOfEdges;
                Support Omega_h_OmegaC; Entity GroupsOfEdgesOnNodesOf[BndOmegaC]; }
            // Edge functions
            { Name psie; NameOfCoef he; Function BF_Edge;
                Support Omega_h_OmegaC_AndBnd; Entity EdgesOf[All, Not BndOmegaC]; }
            // Cut functions
            { Name ci; NameOfCoef Ii; Function BF_GradGroupOfNodes;
                Support ElementsOf[Omega_h_OmegaCC, OnPositiveSideOf Cuts];
                Entity GroupsOfNodesOf[Cuts]; }
            { Name ci; NameOfCoef Ii2; Function BF_GroupOfEdges;
                Support Omega_h_OmegaC_AndBnd;
                Entity GroupsOfEdgesOf[Cuts, InSupport TransitionLayerAndBndOmegaC]; }
        }
        GlobalQuantity {
            { Name I ; Type AliasOf ; NameOfCoef Ii ; }
            { Name V ; Type AssociatedWith ; NameOfCoef Ii ; }
        }
        Constraint {
            { [...] }
            { [...] }
} } }
```


Dealing with global variables, alternatives

Other possibilities can also be considered:

- Winding functions
[S. Schöps, et al. COMPEL (2013)]
- Large resistivity $(\approx 1 \Omega \mathrm{~m})$ in $\Omega_{\mathrm{c}}^{\mathrm{C}}$ and integral constraint on the current (simple but much more DoF), leading to a full h-formulation [Shen, B., et al., IEEE access, 8 (2020) 100403-100414]

Derivation of the $h-\phi$-formulation, cont'd

With the chosen \boldsymbol{h}, we strongly satisfy

$$
\text { curl } \boldsymbol{h}=\boldsymbol{j}, \quad(\boldsymbol{h}-\overline{\boldsymbol{h}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{h}}=\mathbf{0}, \quad I_{i}=\bar{I}_{i} \text { for } i \in C_{I} .
$$

Derivation of the h - ϕ-formulation, cont'd

With the chosen \boldsymbol{h}, we strongly satisfy

$$
\text { curl } \boldsymbol{h}=\boldsymbol{j}, \quad(\boldsymbol{h}-\overline{\boldsymbol{h}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{\boldsymbol{h}}}=\mathbf{0}, \quad I_{i}=\bar{I}_{i} \text { for } i \in C_{I} .
$$

What remains is:

$$
\begin{aligned}
& \text { div } \boldsymbol{b}=0, \quad \text { curl } \boldsymbol{e}=-\partial_{t} \boldsymbol{b}, \quad \boldsymbol{e}=\rho \boldsymbol{j}, \quad \boldsymbol{b}=\mu \boldsymbol{h}, \\
& (\boldsymbol{e}-\overline{\boldsymbol{e}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{e}}=\mathbf{0}, \quad V_{i}=\bar{V}_{i} \text { for } i \in C_{V} .
\end{aligned}
$$

We model an external applied voltage V by a localized e_{a} field in a modified Ohm's law:

$$
e=e_{\mathrm{a}}+\rho \boldsymbol{j}
$$

with $\boldsymbol{e}_{\mathrm{a}}=V \delta\left(\boldsymbol{\xi}-\boldsymbol{\xi}_{\Sigma}\right) \boldsymbol{n}$ so that we globally have a net E.M.F. ($\delta(\cdot)$ is the Dirac distribution)

universite Derivation of the h - ϕ-formulation, cont'd
What remains is:

$$
\begin{aligned}
& \operatorname{div} \boldsymbol{b}=0, \quad \overbrace{\mathbf{c u r l} \boldsymbol{e}=-\partial_{t} \boldsymbol{b}, \quad \boldsymbol{e}=\boldsymbol{e}_{\mathrm{a}}+\rho \boldsymbol{j}, \quad \boldsymbol{b}=\mu \boldsymbol{h}}^{\Rightarrow}, \\
& \underbrace{(\boldsymbol{e}-\overline{\boldsymbol{e}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{e}}=\mathbf{0}}_{\diamond}, \quad \underbrace{V_{i}=\bar{V}_{i} \text { for } i \in C_{V}}_{\oplus} .
\end{aligned}
$$

Derivation of the h - ϕ-formulation, cont'd

What remains is:

$$
\begin{aligned}
& \operatorname{div} \boldsymbol{b}=0, \quad \overbrace{\text { curl } \boldsymbol{e}=-\partial_{t} \boldsymbol{b}, \quad \boldsymbol{e}=\boldsymbol{e}_{\mathrm{a}}+\rho \boldsymbol{j}, \quad \boldsymbol{b}=\mu \boldsymbol{h}}, \\
& \underbrace{(\boldsymbol{e}-\overline{\boldsymbol{e}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{e}}=\mathbf{0}}_{\odot}, \quad \underbrace{V_{i}=\bar{V}_{i} \text { for } i \in C_{V}}_{\oplus} .
\end{aligned}
$$

- Multiply \circledast by a test function \boldsymbol{h}^{\prime}, in the same space than \boldsymbol{h} but with homogeneous BC , and integrate over Ω,

$$
\begin{aligned}
&\left(\partial_{t}(\mu \boldsymbol{h}), \boldsymbol{h}^{\prime}\right)_{\Omega}+\left(\mathbf{c u r l}(\rho \text { curl } \boldsymbol{h}), \boldsymbol{h}^{\prime}\right)_{\Omega}+\left(\text { curl } \boldsymbol{e}_{\mathrm{a}}, \boldsymbol{h}^{\prime}\right)_{\Omega}=0 \\
& \Rightarrow\left(\partial_{t}(\mu \boldsymbol{h}), \boldsymbol{h}^{\prime}\right)_{\Omega}+\left(\rho \mathbf{c u r l} \boldsymbol{h}, \text { curl } \boldsymbol{h}^{\prime}\right)_{\Omega_{\mathrm{c}}}+\underbrace{\left(\boldsymbol{e}_{\mathrm{a}}, \mathbf{c u r l} \boldsymbol{h}^{\prime}\right)_{\Omega_{\mathrm{c}}}}_{\oplus) \ldots} \\
&-(e \underbrace{\left(\boldsymbol{e}_{\mathrm{a}}+\rho \text { curl } \boldsymbol{h}\right) \times \boldsymbol{n}}_{\text {Neumann } \mathrm{BC}(\odot)}, \boldsymbol{h}^{\prime})_{\Gamma_{e}}=0
\end{aligned}
$$ unviessite Derivation of the h - ϕ-formulation, cont'd

- The third term simplifies

$$
\begin{aligned}
\left(\boldsymbol{e}_{\mathrm{a}}, \text { curl } \boldsymbol{h}^{\prime}\right)_{\Omega_{\mathrm{c}}} & =V\left(\delta\left(\boldsymbol{\xi}-\boldsymbol{\xi}_{\Sigma}\right) \boldsymbol{n}, \text { curl } \boldsymbol{h}^{\prime}\right)_{\Omega_{\mathrm{c}}} \\
& =V\left(\boldsymbol{n}, \text { curl } \boldsymbol{h}^{\prime}\right)_{\Sigma} \\
& =V \oint_{\partial \Sigma} \boldsymbol{h}^{\prime} \cdot d \boldsymbol{\ell} \\
& =V I^{\prime}=\bar{V} I^{\prime} \quad(\text { Ampère's law }+\oplus) .
\end{aligned}
$$

Derivation of the h - ϕ-formulation, cont'd

What about div $\boldsymbol{b}=0$?

- Taking $\boldsymbol{h}^{\prime}=\operatorname{grad} \phi^{\prime}$ in the formulation yields

$$
\begin{gathered}
\left(\partial_{t}(\mu \boldsymbol{h}), \operatorname{grad} \phi^{\prime}\right)_{\Omega}+\left(\operatorname{curl}\left(\boldsymbol{e}_{\mathrm{a}}+\rho \text { curl } \boldsymbol{h}\right), \operatorname{grad} \phi^{\prime}\right)_{\Omega}=0, \\
\Rightarrow-\left(\operatorname{div}\left(\partial_{t}(\mu \boldsymbol{h})\right), \phi^{\prime}\right)_{\Omega}+\left(\partial_{t}(\mu \boldsymbol{h}) \cdot \boldsymbol{n}, \phi^{\prime}\right)_{\Gamma_{e}} \\
-\left(\overline{\boldsymbol{e}} \times \boldsymbol{n}, \operatorname{grad} \phi^{\prime}\right)_{\Gamma_{e}}=0
\end{gathered}
$$

One can show that $\left(\partial_{t}(\mu \boldsymbol{h}) \cdot \boldsymbol{n}, \phi^{\prime}\right)_{\Gamma_{e}}=\left(\boldsymbol{e} \times \boldsymbol{n}, \operatorname{grad} \phi^{\prime}\right)_{\Gamma_{e}}$, so with $(\boldsymbol{e}-\overline{\boldsymbol{e}}) \times\left.\boldsymbol{n}\right|_{\Gamma_{e}}=\mathbf{0}$, what remains is

$$
\partial_{t}\left(\left(\operatorname{div}(\mu \boldsymbol{h}), \phi^{\prime}\right)_{\Omega}\right)=0
$$

such that div $\boldsymbol{b}=0$ is (weakly) verified if the initial condition $\boldsymbol{h}_{t_{0}}$ is such that $\left(\operatorname{div}\left(\mu \boldsymbol{h}_{t_{0}}\right), \phi^{\prime}\right)_{\Omega}=0$.

h - ϕ-formulation

Finally, the h - ϕ-formulation amounts to find \boldsymbol{h} in the chosen function space such that, $\forall \boldsymbol{h}^{\prime}$,

$$
\begin{aligned}
& \left(\partial_{t}(\mu \boldsymbol{h}), \boldsymbol{h}^{\prime}\right)_{\Omega}+\left(\rho \text { curl } \boldsymbol{h}, \text { curl } \boldsymbol{h}^{\prime}\right)_{\Omega_{c}} \\
& \quad-\left(\overline{\boldsymbol{e}} \times \boldsymbol{n}, \boldsymbol{h}^{\prime}\right)_{\Gamma_{e}}+\sum_{i=1}^{N} V_{i} \mathcal{I}_{i}\left(\boldsymbol{h}^{\prime}\right)=0,
\end{aligned}
$$

with $V_{i}=\bar{V}_{i}$ for $i \in C_{V}$, and $\mathcal{I}_{i}\left(\boldsymbol{h}^{\prime}\right)=I_{i}^{\prime}$ (i.e. the DoF associated with the cut function \boldsymbol{c}_{i}).

h - ϕ-formulation - Interpretation

When the test function $\boldsymbol{c}_{i}\left(\mathcal{I}_{i}\left(\boldsymbol{c}_{i}\right)=1\right)$ is chosen, we get the equation:

$$
\left(\partial_{t}(\mu \boldsymbol{h}), \boldsymbol{c}_{i}\right)_{\Omega}+\left(\rho \text { curl } \boldsymbol{h}, \text { curl } \boldsymbol{c}_{i}\right)_{\Omega_{\mathrm{c}}}=-V_{i} .
$$

"Flux change $\mu \boldsymbol{h}(=\boldsymbol{b})+$ circulation of $\rho \boldsymbol{j}(=\boldsymbol{e})$, both averaged over a transition layer $=$ total voltage".

NB: The flux of $\mu \boldsymbol{h}$ depends on the chosen cut as $\mu \boldsymbol{h}$ is not a 2 -form (as \boldsymbol{b} should be). Same for $\rho \boldsymbol{j}$.

Simple finite element formulations
 The a-v-formulation
 The h - ϕ-formulation

Resolution techniques
Time integrationLinearization methods
Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$ - a-formulation
The t - a-formulation
Illustrations
Summary
References

Structure of the resolution

- After spatial discretization, we obtain a system of time-dependent, nonlinear ordinary differential equations of the form

$$
\boldsymbol{K}(\boldsymbol{x}, t) \dot{\boldsymbol{x}}(t)+\boldsymbol{M}(\boldsymbol{x}, t) \boldsymbol{x}(t)=\boldsymbol{b}(t)
$$

Structure of the resolution

- After spatial discretization, we obtain a system of time-dependent, nonlinear ordinary differential equations of the form

$$
\boldsymbol{K}(\boldsymbol{x}, t) \dot{\boldsymbol{x}}(t)+\boldsymbol{M}(\boldsymbol{x}, t) \boldsymbol{x}(t)=\boldsymbol{b}(t)
$$

- Resolution: two imbricated loops
- Time-stepping: Implicit Euler with adaptive time steps t_{n}
- Iterative solution of the nonlinear system at each time step t_{n} : Newton-Raphson or fixed point (Picard)

Simple finite element formulations
 The a - v-formulation
 The h - ϕ-formulation

Resolution techniques
Time integration
Linearization methods
Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$-a-formulation
The t - a-formulation

Illustrations

Summary
References

Implicit Euler

Time derivatives at time step t_{n} are expressed as:

$$
\frac{d \boldsymbol{x}}{d t}\left(t_{n}\right)=\frac{\boldsymbol{x}\left(t_{n}\right)-\boldsymbol{x}\left(t_{n-1}\right)}{\Delta t}
$$

with $\boldsymbol{x}\left(t_{n}\right)$ containing the DoFs and $\boldsymbol{u}\left(t_{n-1}\right)$ being known from the initial conditions (first step) or from the previous step.
At each step t_{n} we end up with a system of nonlinear equations of the form

$$
\boldsymbol{A}\left(\boldsymbol{x}\left(t_{n}\right)\right) \boldsymbol{x}\left(t_{n}\right)=\boldsymbol{b}\left(t_{n}\right)
$$

Implicit Euler

Time derivatives at time step t_{n} are expressed as:

$$
\frac{d \boldsymbol{x}}{d t}\left(t_{n}\right)=\frac{\boldsymbol{x}\left(t_{n}\right)-\boldsymbol{x}\left(t_{n-1}\right)}{\Delta t}
$$

with $\boldsymbol{x}\left(t_{n}\right)$ containing the DoFs and $\boldsymbol{u}\left(t_{n-1}\right)$ being known from the initial conditions (first step) or from the previous step.
At each step t_{n} we end up with a system of nonlinear equations of the form

$$
\boldsymbol{A}\left(\boldsymbol{x}\left(t_{n}\right)\right) \boldsymbol{x}\left(t_{n}\right)=\boldsymbol{b}\left(t_{n}\right)
$$

Other possibilities can be implemented:

- Explicit Euler,
- Crank-Nicholson,
- Higher-order schemes (e.g. BDF)...
\Rightarrow In Life-HTS we just explicitly write the scheme in the GetDP formulation.

Life-HTS implicit Euler in formulation

Example: flux variation term $\left(\partial_{t}(\mu \boldsymbol{h}), \boldsymbol{h}^{\prime}\right)_{\Omega}$ in h - ϕ-formulation

$$
\left(\frac{\mu \boldsymbol{h}_{n}}{\Delta t}, \boldsymbol{h}^{\prime}\right)_{\Omega}-\left(\frac{\mu \boldsymbol{h}_{n-1}}{\Delta t}, \boldsymbol{h}^{\prime}\right)_{\Omega}
$$

Formulation \{
\{ Name MagDyn_htot; Type FemEquation; Quantity \{
\{ Name h; Type Local; NameDfSpace h_space; \}
\{ [...] \}
\}
Equation \{
// Flux variation term (on the linear magnetic domain)
Galerkin \{ [mu[] * Dof\{h\} / \$DTime , \{h\}];
In MagnLinDomain; Integration Int; Jacobian Vol; \}
Galerkin \{ [- mu[] * \{h\}[1] / \$DTime , \{h\}];
In MagnLinDomain; Integration Int; Jacobian Vol; \}
[...]
\} \} \}
Syntax:

- Dof $\{\mathrm{h}\}$: DoF at the current time step n (and iteration),
- \{h\}[i]: saved/known solution of \boldsymbol{h} at time step $n-i$,
- $\{\mathrm{h}\}$: solution at the previous iteration (see later).

Adaptive time-stepping

Parameters:

- $\gamma=1 / 2$
- $\beta=2$
- $i_{\text {fast }}=i_{\text {max }} / 4$
- Fixed-point: $i_{\max }=400$
- Newton-Raphson $i_{\text {max }}=50$

Life-HTS time-stepping in resolution

```
Resolution {
    { Name MagDyn;
        System { {Name A; NameOfFormulation MagDyn_htot;} }
        Operation {
            [...]
            // Initialize}
            SetTime[ timeStart ]; SetDTime[ dt ]; SetTimeStep[ 0 ];
            // Time loop
            While[$Time < timeFinalSimu && $DTime > 1e-10]{
                SetTime[ $Time + $DTime ]; SetTimeStep[ $TimeStep + 1 ];
                // Customized iterative loop
                Call CustomIterativeLoop;
                // If converged (= less than iter max and not diverged)...
                Test[ $iter < iter_max && ($res / $res0 <= 1e10)]{
                    SaveSolution[A];
                    Test[ $iter < iter_max / 2 && $DTime < dt_max]{
                        Evaluate[ $dt_new = Min[$DTime * 2, dt_max] ];
                        SetDTime[$dt_new];
                    }
                }
                    // ... otherwise, decrease the time step and start again
                    {
                            RemoveLastSolution[A];
                            Evaluate[ $dt_new = $DTime / 2 ];
                            SetDTime[$dt_new];
                    SetTime[$Time - $DTime]; SetTimeStep[$TimeStep - 1];
                }
                }
        }
    }
}
```


Simple finite element formulations
 The a - v-formulation
 The h - ϕ-formulation

Resolution techniques
Time integration
Linearization methods
Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$-a-formulation
The t - a-formulation

Illustrations

Summary
References

Solving a nonlinear equation: $f(x)=b$

1. Picard iteration method (a fixed point method):

- Write $f(x)$ as $f(x)=A(x) x$.
- Get a first estimate x_{0}.
- At each iteration i :
- solve $A\left(x_{i-1}\right) x=b$,
- $x_{i}:=x$,
- $i:=i+1$ and loop.
- Stop when convergence criterion is met.
- May converge for wide range of first estimates x_{0}.
- Convergence is slow!

Solving a nonlinear equation: $f(x)=b$

2. Newton-Raphson iterative method:

- Get a first estimate x_{0}.
- At each iteration i, solve for x_{i} :

$$
\frac{d f}{d x}\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)=f\left(x_{i-1}\right) .
$$

- Stop when convergence criterion is met.
- Quadratic convergence, if the initial est. x_{0} is close enough.
- Relaxation factors can also be implemented.
- If x is a vector, $\frac{d f}{d x}$ is a matrix (Jacobian matrix)...

Jacobian for isotropic constitutive laws

- Consider a constitutive law of the form

$$
\boldsymbol{a}(\boldsymbol{x})=g(\|\boldsymbol{x}\|) \boldsymbol{x}
$$

Example: $\boldsymbol{e}=\rho \boldsymbol{j}$, or $\boldsymbol{b}=\mu \boldsymbol{h}, \ldots$

- The Newton-Raphson expansion can be cast in the form

$$
\boldsymbol{a}\left(\boldsymbol{x}^{i}\right) \approx \boldsymbol{a}\left(\boldsymbol{x}^{i-1}\right)+\boldsymbol{J}\left(\boldsymbol{x}^{i-1}\right) \cdot\left(\boldsymbol{x}^{i}-\boldsymbol{x}^{i-1}\right)
$$

where \boldsymbol{J} is the Jacobian matrix (i is the iteration index):

$$
(\boldsymbol{J}(\boldsymbol{x}))_{j k}=\frac{\partial a_{j}}{\partial x_{k}}=\delta_{j k} g(\|\boldsymbol{x}\|)+x_{j} x_{k} \frac{\frac{d g(\|\boldsymbol{x}\|)}{d\|\boldsymbol{x}\|}}{\|\mathbf{x}\|}
$$

Jacobian for isotropic constitutive laws

- Consider a constitutive law of the form

$$
\boldsymbol{a}(\boldsymbol{x})=g(\|\boldsymbol{x}\|) \boldsymbol{x}
$$

Example: $\boldsymbol{e}=\rho \boldsymbol{j}$, or $\boldsymbol{b}=\mu \boldsymbol{h}, \ldots$

- The Newton-Raphson expansion can be cast in the form

$$
\boldsymbol{a}\left(\boldsymbol{x}^{i}\right) \approx \boldsymbol{a}\left(\boldsymbol{x}^{i-1}\right)+\boldsymbol{J}\left(\boldsymbol{x}^{i-1}\right) \cdot\left(\boldsymbol{x}^{i}-\boldsymbol{x}^{i-1}\right)
$$

where \boldsymbol{J} is the Jacobian matrix (i is the iteration index):

$$
(\boldsymbol{J}(\boldsymbol{x}))_{j k}=\frac{\partial a_{j}}{\partial x_{k}}=\delta_{j k} g(\|\boldsymbol{x}\|)+x_{j} x_{k} \frac{\frac{d g(\|\boldsymbol{x}\|)}{d\|\boldsymbol{x}\|}}{\|\mathbf{x}\|}
$$

- Example: $\left(\rho \text { curl } \boldsymbol{h}, \mathbf{c u r l} \boldsymbol{h}^{\prime}\right)_{\Omega_{\mathrm{c}}}$ in h - ϕ-formulation, with curl $\boldsymbol{h}=\boldsymbol{j}$:

$$
\left(\rho\left(\boldsymbol{j}^{i-1}\right) \boldsymbol{j}^{i-1}, \operatorname{curl} \boldsymbol{h}^{\prime}\right)_{\Omega_{\mathrm{c}}}+\left(\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{j}}\left(\boldsymbol{j}^{i-1}\right) \boldsymbol{j}^{i}, \operatorname{curl} \boldsymbol{h}^{\prime}\right)_{\Omega_{\mathrm{c}}}-\left(\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{j}}\left(\boldsymbol{j}^{i-1}\right) \boldsymbol{j}^{i-1}, \operatorname{curl} \boldsymbol{h}^{\prime}\right)_{\Omega_{c}}
$$

Life-HTS Picard and Newton-Raphson in formulation

Example: nonlinear term $\left(\rho \text { curl } \boldsymbol{h}, \mathbf{c u r l} \boldsymbol{h}^{\prime}\right)_{\Omega_{\mathrm{c}}}$ in h - ϕ-formulation

$$
\text { N-R: } \quad\left(\rho\left(\boldsymbol{j}^{i-1}\right) \boldsymbol{j}^{i-1}, \operatorname{curl} \boldsymbol{h}^{\prime}\right)_{\Omega_{c}}+\left(\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{j}}\left(\boldsymbol{j}^{i-1}\right) \boldsymbol{j}^{i}, \operatorname{curl} \boldsymbol{h}^{\prime}\right)_{\Omega_{c}}-\left(\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{j}}\left(\boldsymbol{j}^{i-1}\right) \boldsymbol{j}^{i-1}, \text { curl } \boldsymbol{h}^{\prime}\right)_{\Omega_{\mathrm{c}}}
$$

```
Formulation {
    { Name MagDyn_htot; Type FemEquation;
        Quantity {
            { Name h; Type Local; NameOfSpace h_space; }
            { [...] }
        }
        Equation {
            // (1) Picard
            Galerkin { [ rho[{d h}]] * Dof{d h} , {d h} ];
                In NonLinOmegaC; Integration Int; Jacobian Vol; }
            // (2) Newton-Raphson}
            Galerkin { [ rho[{d h}] * {d h} , {d h} ];
                In NonLinOmegaC; Integration Int; Jacobian Vol; }
            Galerkin { [ dedj[{d h}] * Dof{d h} , {d h} ];
                In NonLinOmegaC; Integration Int; Jacobian Vol; }
            Galerkin { [ - dedj[{d h}] * {d h} , {d h} ];
                In NonLinOmegaC ; Integration Int; Jacobian Vol; }
            [...]
```

\} \} \}

Choosing the first estimate

- We use polynomial extrapolation:

(a) Zeroth-order extrapolation

(b) First-order extrapolation

(c) Second-order extrapolation
- It can significantly affect the required number of iterations
- Best results:
- 1st order for the h - ϕ-formulation
- 2nd order for the $a-v$-formulation

In the resolution: SetExtrapolationOrder [n]; $(n \in \mathbb{N})$

Convergence criterion

- The residual $\boldsymbol{b}-\boldsymbol{A}\left(\boldsymbol{x}_{i}\right) \boldsymbol{x}_{i}$ can be misleading
- In practice we usually choose the electromagnetic power, P, as a (global) convergence indicator:
h - ϕ-formulation

$$
P=\left(\partial_{t}(\mu \boldsymbol{h}), \boldsymbol{h}\right)_{\Omega}+(\rho \text { curl } \boldsymbol{h}, \text { curl } \boldsymbol{h})_{\Omega_{\mathrm{c}}}
$$

a - v-formulation

$$
P=\left(\partial_{t}(\text { curl } \boldsymbol{a}), \nu \text { curl } \boldsymbol{a}\right)_{\Omega}+(\sigma \boldsymbol{e}, \boldsymbol{e})_{\Omega_{\mathrm{c}}}
$$

with $\boldsymbol{e}=-\partial_{t} \boldsymbol{a}-\operatorname{grad} v$

- We stop when $|\Delta P / P|$ is small enough:
- $\approx 10^{-8}$ with Newton-Raphson
- $\approx 10^{-4}$ with Picard

Simple finite element formulations
 The a - v-formulation
 The h - ϕ-formulation

Resolution techniques

Time integration
Linearization methods
Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$-a-formulation
The t - a-formulation

Illustrations

Summary
References

To fix ideas: a superconducting ring

Consider a superconducting ring subjected to a time-varying flux, $\dot{\Phi}$. The ring is modelled as a non-linear lump resistor with

$$
R(|I|)=\frac{V_{c}}{I_{c}}\left(\frac{|I|}{I_{c}}\right)^{n-1},
$$

where V_{c} and I_{c} are characteristic voltage and current, and n is a critical index.

To fix ideas: a superconducting ring

Consider a superconducting ring subjected to a time-varying flux, $\dot{\Phi}$. The ring is modelled as a non-linear lump resistor with

$$
R(|I|)=\frac{V_{c}}{I_{c}}\left(\frac{|I|}{I_{c}}\right)^{n-1},
$$

where V_{c} and I_{c} are characteristic voltage and current, and n is a critical index.
The circuit equation

$$
\dot{\Phi}=R(|I|) I+L \dot{I}
$$

can be solved in one of two ways!

Ring, $1^{\text {st }}$ way: solve for the current I

- Discretize in time: $t_{j}=j \Delta t, j=0,1,2, \ldots$,
- Consider the implicit Euler method with $\dot{I} \approx\left(I_{j}-I_{j-1}\right) / \Delta t$,

$$
\dot{\Phi}=R(|I|) I+L \dot{I} \quad \rightarrow \quad \dot{\Phi}_{j}=V_{c} \frac{\left|I_{j}\right|^{n-1} I_{j}}{I_{c}^{n}}+L \frac{I_{j}-I_{j-1}}{\Delta t}
$$

Ring, $1^{\text {st }}$ way: solve for the current I

- Discretize in time: $t_{j}=j \Delta t, j=0,1,2, \ldots$,
- Consider the implicit Euler method with $\dot{I} \approx\left(I_{j}-I_{j-1}\right) / \Delta t$,

$$
\dot{\Phi}=R(|I|) I+L \dot{I} \quad \rightarrow \quad \dot{\Phi}_{j}=V_{c} \frac{\left|I_{j}\right|^{n-1} I_{j}}{I_{c}^{n}}+L \frac{I_{j}-I_{j-1}}{\Delta t} .
$$

- Make this adimensional by introducing $x=a I_{j} / I_{c}$, to obtain

$$
b=|x|^{n-1} x+x, \quad(I \text {-form })
$$

where

$$
a=\left(\frac{V_{c} \Delta t}{L I_{c}}\right)^{1 /(n-1)} \quad \text { and } \quad b=\frac{\dot{\Phi}_{j}+L I_{j-1} / \Delta t}{a L I_{c} / \Delta t}
$$

Ring, $2^{\text {nd }}$ way: solve for the voltage drop across R

- Solve now in terms of $V_{j}=R I_{j}$,

$$
\dot{\Phi}=R(|I|) I+L \dot{I} \quad \rightarrow \quad \dot{\Phi}_{j}=V_{j}+L \frac{I_{c}\left|V_{j} / V_{c}\right|^{1 / n-1} V_{j} / V_{c}-I_{j-1}}{\Delta t}
$$

Ring, $2^{\text {nd }}$ way: solve for the voltage drop across R

- Solve now in terms of $V_{j}=R I_{j}$,

$$
\dot{\Phi}=R(|I|) I+L \dot{I} \quad \rightarrow \quad \dot{\Phi}_{j}=V_{j}+L \frac{I_{c}\left|V_{j} / V_{c}\right|^{1 / n-1} V_{j} / V_{c}-I_{j-1}}{\Delta t}
$$

- Make this adimensional with $x=c V_{j} / V_{c}$, to get

$$
d=|x|^{1 / n-1} x+x, \quad(V \text {-form })
$$

where

$$
c=\left(\frac{\Delta t}{L I_{c}}\right)^{n /(n-1)} \quad \text { and } \quad d=\frac{\dot{\Phi}_{j}}{c}+\frac{L I_{j-1}}{c \Delta t}
$$

Ring example, summary

In each case, need to solve an equation of the form $f(x)=$ constant:

$$
f(x)=|x|^{n-1} x+x
$$

I-form
~ h-conform (Ampère)

$$
f(x)=|x|^{1 / n-1} x+x
$$

V-form
~ b-conform (Faraday)

Nonlinearity in HTS for complementary formulations

$$
f(x)=|x|^{n-1} x+x
$$

x

$$
f(x)=|x|^{1 / n-1} x+x
$$

h - ϕ-formulation $(\boldsymbol{e}=\rho \boldsymbol{j})$

$$
a-v \text {-formulation }(\boldsymbol{j}=\sigma \boldsymbol{e})
$$

Different nonlinearities \Rightarrow different numerical behaviors

Warning!

Beware of cycles

Cycles can occur in each method, depending on the shape of the function $f(x)$:

Picard iteration on
h - ϕ-formulation
Prefer Newton-Raphson!

Newton-Raphson iteration on a-v-formulation

Prefer Picard!

Relaxation factors can help, but no efficient solution (that we know of)

Illustration for a superconducting cube

System

$$
\begin{aligned}
& \text { Side } a=10 \mathrm{~mm} . \\
& \mu_{0} \boldsymbol{h}_{s}=\hat{z} B_{0} \sin (2 \pi f t), \\
& \text { with } B_{0}=200 \mathrm{mT}, \\
& f=50 \mathrm{~Hz}, \\
& j_{c}=10^{8} \mathrm{~A} / \mathrm{m}^{2} \text { and } \\
& n=100 .
\end{aligned}
$$

$\|j\|\left(\mathrm{A} / \mathrm{m}^{2}\right)$ 1.07×10^{8}

Residual

- L_{2} norm of $\boldsymbol{r}=\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}$
- Left: h - ϕ-formulation
- Right: $a-v$-formulation

(a) Newton-Raphson technique

(b) Picard technique.
\Rightarrow Much more efficient with Newton-Raphson (as is expected!)

Hands-on: $h-\phi$ - and $a-v$-formulation

Magnetization of a superconducting pellet: phenomenology
Magnetize a cylindrical pellet of aspect ratio 0.5 (height/diameter) in an axial field of maximum $0.6 \times$ the penetration field:

E. H. Brandt, PRB 58 (1998) 6506

Hands-on: $h-\phi$ - and $a-v$-formulation

Magnetization of a superconducting pellet: h - ϕ-formulation and a - v-formulation

models/Life-HTS/cylinder/cylinder.pro

Conclusion for HTS

The diverging slope associated with $\boldsymbol{j}=\sigma \boldsymbol{e}$ for $\boldsymbol{j} \rightarrow 0$ is really difficult to handle.
\Rightarrow Among the two simple formulations, the $h-\phi$-formulation is much more efficient for systems with HTS:

- with an adaptive time-stepping algorithm,
- solved with a Newton-Raphson method,
- with a first estimate obtained by $1^{\text {st }}$-order extrapolation.

One particular case: "single time step"

- For large values of n, nearly a critical state model.
- Robustness of Picard on the $\boldsymbol{j}=\sigma \boldsymbol{e}$ law can help to reduce the number of time steps.

- Here, for a magnetization cycle (3D cube problem)
- lines: h - ϕ-formulation with 300 time steps,
- dots: a-v-formulation with 20 time steps \Rightarrow much faster!
- In practice, accurate for \boldsymbol{j} and \boldsymbol{b}, but \boldsymbol{e} is underestimated
Simple finite element formulations
The a - v-formulation
The h - ϕ-formulation

Resolution techniques

Time integration Linearization methods Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$-a-formulation The t - a-formulation
Illustrations
Summary
References

Ferromagnetic materials

The nonlinearity is in the magnetic constitutive law.

- h - ϕ-formulation the involved law is $\boldsymbol{b}=\mu \boldsymbol{h}$.

\Rightarrow Easily enters cycles with Newton-Raphson.
OK with Picard, or N-R with relaxation factors but slow.

Ferromagnetic materials

The nonlinearity is in the magnetic constitutive law.

- h - ϕ-formulation the involved law is $\boldsymbol{b}=\mu \boldsymbol{h}$.

\Rightarrow Easily enters cycles with Newton-Raphson.
OK with Picard, or $\mathrm{N}-\mathrm{R}$ with relaxation factors but slow.
- a - v-formulation the involved law is $\boldsymbol{h}=\nu \boldsymbol{b}$.

\Rightarrow Efficiently solved with Newton-Raphson.
The a-v-formulation is more appropriate for dealing with the nonlinearity, whereas for HTS, the complementary formulation was best.

Simple finite element formulations
The a - v-formulation
The h - ϕ-formulation
Resolution techniques
Time integration
Linearization methods
Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$ - a-formulation
The t - a-formulation
Illustrations
Summary
References

Coupled materials - $h(-\phi)$ - a-formulation

Use the best formulation in each material
Decompose the domain Ω, for example into:

- $\Omega^{h}=\{$ HTS $\}$
- $\Omega^{a}=\{$ Ferromagnet, Air $\}$ and couple via $\Gamma_{\mathrm{m}}=\partial(\mathrm{HTS})$:

$$
\begin{aligned}
\left(\partial_{t}(\mu \boldsymbol{h}), \boldsymbol{h}^{\prime}\right)_{\Omega^{h}}+\left(\rho \text { curl } \boldsymbol{h}, \text { curl } \boldsymbol{h}^{\prime}\right)_{\Omega_{c}^{h}}+\left(\partial_{t} \boldsymbol{a} \times \boldsymbol{n}_{\Omega^{h}}, \boldsymbol{h}^{\prime}\right)_{\Gamma_{\mathrm{m}}} & =0 \\
\left(\nu \text { curl } \boldsymbol{a}, \text { curl } \boldsymbol{a}^{\prime}\right)_{\Omega^{a}}-\left(\boldsymbol{h} \times \boldsymbol{n}_{\Omega^{a}}, \boldsymbol{a}^{\prime}\right)_{\Gamma_{\mathrm{m}}} & =0 .
\end{aligned}
$$

(For homogeneous Neumann BC)

$h(-\phi)$ - a-formulation results

Example:

- Stacked cylinders
- 2D axisymmetric
- External applied field

Number of iterations for three discretization levels:

	h - ϕ-formulation	$a-v$-formulation		$h(-\phi)$ - a-formulation	
Coarse	1878		4381		$\mathbf{1 0 7 1}$
Medium	3366	7539		$\mathbf{1 9 3 1}$	
Fine	4422		14594		$\mathbf{3 7 5 3}$

$$
\text { In general, a speed-up from } 1.2 \text { to } 3 \text { is obtained. }
$$

$h(-\phi)-a$-formulation stability

The formulation is mixed (two unknown fields on Γ_{m})
\Rightarrow Shape functions must satisfy an inf-sup condition.

- First-order functions for \boldsymbol{h} and \boldsymbol{a} (inf-sup KO)

- Second-order for \boldsymbol{a}, first-order for \boldsymbol{h} (inf-sup OK)

Life-HTS Hierarchical functions

Example for $2^{\text {nd }}-$ order shape functions for \boldsymbol{a} (in 2D) on Γ_{m} :

```
FunctionSpace{
    { Name a_space_2D; Type Form1P;
        BasisFunction {
            // Usual first-order functions
            { Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
                Support Omega_a_AndBnd; Entity NodesOf[All]; }
            // Second-order functions on BndOmega_ha only
            { Name psin2; NameOfCoef an2; Function BF_PerpendicularEdge_2E;
                Support Omega_a_AndBnd; Entity EdgesOf [BndOmega_ha]; }
        }
        Constraint {
            { NameOfCoef an; EntityType NodesOf; NameOfConstraint a; }
            { NameOfCoef an2; EntityType EdgesOf; NameOfConstraint a2; }
        }
    }
}
```


Life-HTS Hierarchical functions

Example for $2^{\text {nd }}-$ order shape functions for \boldsymbol{a} (in 2D) on Γ_{m} :

```
FunctionSpace{
    { Name a_space_2D; Type Form1P;
        BasisFunction {
            // Usual first-order functions
            { Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
                Support Omega_a_AndBnd; Entity NodesOf[All]; }
            // Second-order functions on BndOmega_ha only
            { Name psin2; NameOfCoef an2; Function BF_PerpendicularEdge_2E;
                Support Omega_a_AndBnd; Entity EdgesOf [BndOmega_ha]; }
        }
        Constraint {
            { NameOfCoef an; EntityType NodesOf; NameOfConstraint a; }
            { NameOfCoef an2; EntityType EdgesOf; NameOfConstraint a2; }
        }
    }
}
```


NB: This is for a locally enriched function space. Using $2^{\text {nd }}$-order elements on the whole domain can be done directly at the meshing step (using e.g. gmsh -order 2).

Simple finite element formulations
The a - v-formulation
The h - ϕ-formulation
Resolution techniques
Time integration
Linearization methods
Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$ - a-formulation
The t - a-formulation
Illustrations
Summary
References

HTS tapes - t - a-formulation

To model thin superconducting tapes, two main possibilities:

1. Use the true geometry and the h - ϕ-formulation with one-element across the thickness (quadrangle):

2. Perform the slab approximation and model the tape as a line \Rightarrow t - a-formulation :

Consider a tape Γ_{w} of thickness w.
The current density is described by a current potential \boldsymbol{t} :

- such that $\boldsymbol{j}=\mathbf{c u r l} \boldsymbol{t}$,
- gauged by being defined along the normal of the tape, $\boldsymbol{t}=\boldsymbol{t} \boldsymbol{n}$,
- with BC related to the total current I $\left(t^{+}-t^{-}=I / w\right)$.

In Ω_{a}, write the $a-v$-formulation and express the surface integral $\left(\boldsymbol{h} \times \boldsymbol{n}, \boldsymbol{a}^{\prime}\right)_{\Gamma_{w}}$ in terms of the surface current density w curl \boldsymbol{t}.

Find \boldsymbol{a} and \boldsymbol{t} in the chosen function spaces such that, $\forall \boldsymbol{a}^{\prime}, \boldsymbol{t}^{\prime}$:

$$
\begin{aligned}
& \left(\nu \text { curl } \boldsymbol{a}, \text { curl } \boldsymbol{a}^{\prime}\right)_{\Omega_{a}}-\left(\overline{\boldsymbol{h}} \times \boldsymbol{n}_{\Omega}, \boldsymbol{a}^{\prime}\right)_{\Gamma_{h}}-\left(w \text { curl } \boldsymbol{t}, \boldsymbol{a}^{\prime}\right)_{\Gamma_{w}}=0, \\
& \left(w \partial_{t} \boldsymbol{a}, \text { curl } \boldsymbol{t}^{\prime}\right)_{\Gamma_{w}}+\left(w \rho \text { curl } \boldsymbol{t}, \text { curl } \boldsymbol{t}^{\prime}\right)_{\Gamma_{w}}=-\sum_{i \in C} V_{i} \mathcal{I}_{i}\left(\boldsymbol{t}^{\prime}\right),
\end{aligned}
$$

with $V_{i}=\bar{V}_{i}$ for $i \in C_{V}$, and $\mathcal{I}_{i}\left(\boldsymbol{t}^{\prime}\right)=I_{i}^{\prime}$ (i.e. the DoF associated with the BC $w\left(t^{+}-t^{-}\right)$).

It is basically an $h(-\phi)$-a-formulation with a slab approximation
\Rightarrow More information and applications in F. Grilli's lecture tomorrow
See also [Bortot, L., et al., IEEE TAS 30(5), 1-11 (2020)]
université

t-a-formulation - Stability

The t - a-formulation is mixed (two unknown fields on Γ_{w})
\Rightarrow Shape functions must satisfy an inf-sup condition
Similar conclusions than with the $h(-\phi)$ - a-formulation
Example for a 2D case, current density along the tape:

Life-HTS function space for t

Defined as a scalar quantity in the FunctionSpace, the normal \boldsymbol{n} is introduced in the formulation:

$$
t=\sum_{n \in \Gamma_{w} \backslash \partial \Gamma_{w}} t_{n} \psi_{n}+\sum_{i=1}^{N} T_{i} \ell_{i}, \quad \text { with } \quad \boldsymbol{t}=t \boldsymbol{n} .
$$

```
FunctionSpace{
    { Name t_space; Type Form0
        BasisFunction {
            // Node functions except on the lateral edges of the tapes
            { Name psin; NameOfCoef tn; Function BF_Node;
                Support Gamma_w; Entity NodesOf[All, Not LateralEdges]; }
            // Global shape function for representing a net current intensity
            { Name elli; NameOfCoef Ti; Function BF_GroupOfNodes;
                Support Gamma_w_AndBnd; Entity GroupsOfNodesOf[PositiveEdges]; }
    }
    GlobalQuantity {
            // Global quantities to be used in the formulation
            { Name T ; Type AliasOf ; NameOfCoef Ti ; }
            { Name V ; Type AssociatedWith ; NameOfCoef Ti ; }
    }
    Constraint {
            { NameOfCoef V; EntityType GroupsOfNodesOf; NameOfConstraint Voltage; }
            { NameOfCoef T; EntityType GroupsOfNodesOf; NameOfConstraint Current_w; }
        }
    }
}
```


Hands-on: 3D HTS magnet motor pole

One eight of the geometry (air domain not shown)
models/Life-HTS/magnet/magnet.pro

	NL laws	Function space	Number of DOFs	$\sigma \neq 0$ in $\Omega_{\mathrm{c}}^{\mathrm{C}} ?$
h	ρ, μ	$\boldsymbol{h} \in \mathcal{H}(\Omega)=\{\boldsymbol{h} \in H(\Omega)\}$	Edges in Ω	Yes
$h-\phi$	ρ, μ	$\boldsymbol{h} \in \mathcal{H}_{\phi}(\Omega)=\left\{\boldsymbol{h} \in H(\Omega) \mid \boldsymbol{c u r l} \boldsymbol{h}=\mathbf{0}\right.$ in $\left.\Omega_{\mathrm{c}}^{\mathrm{C}}\right\}$	Edges in $\Omega_{\mathrm{c}}+$ Nodes in $\Omega_{\mathrm{c}}^{\mathrm{C}}$	No
\bar{a}	σ, ν	$\boldsymbol{a} \in \overline{\mathcal{A}}(\Omega)=\{\boldsymbol{a} \in H(\Omega)\}$	Edges in Ω	(Yes)
a	σ, ν	$\boldsymbol{a} \in \mathcal{A}(\Omega)=\left\{\boldsymbol{a} \in H(\Omega) \mid\right.$ co-tree gauge in $\left.\Omega_{\mathrm{c}}^{\mathrm{C}}\right\}$	Edges in $\Omega_{\mathrm{c}}+$ Facets in $\Omega_{\mathrm{c}}^{\mathrm{C}}$	No
$h-a$	ρ, ν	$\boldsymbol{h} \in \mathcal{H}_{\phi}\left(\Omega_{\mathrm{c}}\right), \boldsymbol{a} \in \mathcal{A}\left(\Omega_{\mathrm{c}}^{\mathrm{C}}\right)$	Edges in $\Omega_{\mathrm{c}}+$ Facets † in $\Omega_{\mathrm{c}}^{\mathrm{C}}$	No
$h-\phi-a$	ρ, ν	$\boldsymbol{h} \in \mathcal{H}_{\phi}\left(\Omega_{\mathrm{m}}^{\mathrm{C}}\right), \boldsymbol{a} \in \mathcal{A}\left(\Omega_{\mathrm{m}}\right)$	Edges in $\Omega_{h, \mathrm{c}}+$ Nodes ${ }^{\dagger}$ in $\Omega_{h, \mathrm{c}}^{\mathrm{C}}+$ Facets in Ω_{m}	No
$h-\phi-b$	ρ, ν	$\boldsymbol{h} \in \mathcal{H}_{\phi}(\Omega), \boldsymbol{b} \in\left(H_{3}\left(\Omega_{\mathrm{m}}\right)\right)^{3}$	Edges in $\Omega_{\mathrm{c}}+$ Nodes in $\Omega_{\mathrm{c}}^{\mathrm{C}}+{\text { Volumes }(\times 3) \text { in } \Omega_{\mathrm{m}}}_{\text {No }}^{\text {No }}$	
$a-j$	ρ, ν	$\boldsymbol{a} \in \mathcal{A}(\Omega), \boldsymbol{j} \in \mathcal{A}\left(\Omega_{\mathrm{c}}\right)$	Edges $(\times 2)$ in $\Omega_{\mathrm{c}}+$ Facets in $\Omega_{\mathrm{c}}^{\mathrm{C}}$	No

Hands-on: 3D HTS magnet motor pole

Current density in the bulk during magnetizing pulse and relaxation
[J. Dular et al. IEEE Trans.
Mag. (2022)]

	HTS loss (J)	\# DOFs	\# iterations	Time/it.	Total time
h	6.35	35,532	4,057	3.3 s	3 h 42
$h-\phi$	6.36	12,172	3,937	1.4 s	1 h 33
\bar{a}	6.38	29,010	2,955	3.1 s	2 h 33
a	6.39	26,964	3,147	2.1 s	1 h 48
$h-a$	6.31	32,045	1,124	2.7 s	0 h 50
$h-\phi-a$	6.33	15,776	1,108	2.1 s	0 h 39
$h-\phi-b$	6.37	20,821	1,104	3.2 s	0 h 58
$a-j$	6.34	36,019	2,225	3.6 s	2 h 15

Simple finite element formulations
The a-v-formulation
The h - ϕ-formulation
Resolution techniques
Time integration Linearization methods
Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$ - a-formulation
The t - a-formulation
Illustrations
Summary
References

Improving HTS magnetic shields with a soft ferromagnetic material

Shielding an axial field with a HTS tube

Shielding with an additional ferromagnetic tube
(a)

(b)

[Lousberg et al., TAS (2010)]

Protecting a bulk HTS against crossedfield demagnetisation with a ferromagnetic layer

Sequence of applied fields

Current distribution in the bulk with a ferromagnetic top layer $\left(\mu_{r}=10,100\right)$

axial B_{HP}, Hall probe

Magnetic shielding in inhomogeneous fields

(a)

(b)

Magnetic shielding, bulk superconducting cylinders and caps

Induced currents vs. geometries

Tracking stray fields in composite shields

[Fagnard et al., SUST (2019)]

Critical states in stacked Niobium films

Peculiar patterns of discontinuity lines in stacks of Nb films

$$
L=200 \mu \mathrm{~m}, d=t=300 \mathrm{~nm}
$$

Needs to include a genuine $J_{c}(B)$-dependence

Raising field stage

Decreasing field stage

Critical states in the presence of a ratchet pinning potential

Experiment: rotation of the central discontinuity line in the decreasing field stage, after magnetization

Model: an anisotropic pinning force reproduces the result

$\mu_{0} H_{a}=3.11 \mathrm{mT}$

$$
\mu_{0} H_{a}=0.75 \mathrm{mT}
$$

Rotating HTS motor

Pulse magnetization (h - a-formulation)

$$
I_{B_{ \pm}}(t)=-I_{C_{ \pm}}(t)= \pm I_{\max } \frac{t}{\tau} \exp (1-t / \tau), I_{A_{ \pm}}(t)=0
$$

3-phase ($A-B-C$) motor mode (a-formulation)

$$
\begin{aligned}
& I_{A_{ \pm}}(t)= \pm I_{\max } \sin (\omega t) \\
& I_{B_{ \pm}}(t)= \\
& \pm I_{\max } \sin (\omega t+2 \pi / 3) \\
& I_{C_{ \pm}}(t)= \\
& \pm I_{\max } \sin (\omega t-2 \pi / 3) \\
& 8000 \\
& 80000
\end{aligned}
$$

2D axisymmetric model of moving bulk superconductors

a)

b)

Coil of HTS Tapes

$h-a$ formulation with thermal coupling; tapes in parallel, series or end-coupled

Current redistribution phenomena for current-driven tapes connected in parallel

$\underset{\substack{\text { Norm } B(1) \\ 0.274}}{ }$

Good agreement with reference results from COMSOL

Simple finite element formulations
The a-v-formulation
The h - ϕ-formulation

Resolution techniques
Time integration
Linearization methods
Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$ - a-formulation
The t - a-formulation
Illustrations

Summary

References

Summary

- Overview of finite element formulations for high-temperature superconductors
- "Simple" formulations: h - ϕ-formulation, a - v-formulation
- Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of nonlinear constitutive law
- For pure HTS problems, use h - ϕ-formulation with Newton-Raphson
- Adaptive time-stepping a must

Summary

- Overview of finite element formulations for high-temperature superconductors
- "Simple" formulations: h - ϕ-formulation, a - v-formulation
- Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of nonlinear constitutive law
- For pure HTS problems, use h - ϕ-formulation with Newton-Raphson
- Adaptive time-stepping a must
- Mixed formulations: $h(-\phi)$ - a-formulation , t - a-formulation
- Useful for hybrid systems with ferromagnetic materials
- Should be discretized with caution to ensure well-posedness

Summary

- Overview of finite element formulations for high-temperature superconductors
- "Simple" formulations: h - ϕ-formulation, a - v-formulation
- Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of nonlinear constitutive law
- For pure HTS problems, use h - ϕ-formulation with Newton-Raphson
- Adaptive time-stepping a must
- Mixed formulations: $h(-\phi)$ - a-formulation , t - a-formulation
- Useful for hybrid systems with ferromagnetic materials
- Should be discretized with caution to ensure well-posedness
- All formulations available in open source Life-HTS toolkit, based on ONELAB, Gmsh and GetDP

Summary

- Overview of finite element formulations for high-temperature superconductors
- "Simple" formulations: h - ϕ-formulation, a - v-formulation
- Different numerical behaviors (Newton-Raphson vs. Picard) due to shape of nonlinear constitutive law
- For pure HTS problems, use h - ϕ-formulation with Newton-Raphson
- Adaptive time-stepping a must
- Mixed formulations: $h(-\phi)-a$-formulation , t - a-formulation
- Useful for hybrid systems with ferromagnetic materials
- Should be discretized with caution to ensure well-posedness
- All formulations available in open source Life-HTS toolkit, based on ONELAB, Gmsh and GetDP
- Several available or finding their way into commercial tools (e.g. COMSOL)
Simple finite element formulationsThe a-v-formulationThe h - ϕ-formulation
Resolution techniques
Time integration Linearization methods
Comparison of the formulations
Mixed finite element formulations
The $h(-\phi)$ - a-formulation
The t - a-formulation
Illustrations
Summary
References

Main references

- ONELAB website, with codes, examples, and tutorials: https://onelab.info
- Life-HTS website: http://www.life-hts.uliege.be
- Finite Element Formulations for Systems with High-Temperature Superconductors, J. Dular, C. Geuzaine, and B. Vanderheyden, TAS 30 (2020) 8200113.
- On the Stability of Mixed Finite-Element Formulations for High-Temperature Superconductors,
J. Dular, M. Harutyunyan, L. Bortot, S. Schöps, B. Vanderheyden, and C. Geuzaine, TAS 31 (2021) 8200412
- What Formulation Should One Choose for Modeling a 3D HTS Motor Pole with Ferromagnetic Materials?,
J. Dular, K. Berger, C. Geuzaine, and B. Vanderheyden, IEEE Trans. Mag. (in press)

Post-Scriptum

For fun, go to the

- Google Play Store (if you are on Android)
- Apple AppStore (if you are on iOS)
and download the ONELAB app: it contains a full-featured version of Gmsh \& GetDP
... so you can impress your friends by solving finite element problems with HTS on your smartphone!

Thanks for your attention

« cgeuzaine@uliege.be

