An introduction to Life-HTS:

Liège University finite element models for High-Temperature Superconductors

Benoît VANDERHEYDEN

Dept. of Electrical Engineering and Computer Science
School of Engineering
Liège Université, Belgium
B.Vanderheyden@uliege.be
people.montefiore.ulg.ac.be/vdh

Outline

Introduction to Life-HTS
 Life-HTS: scope and framework
 A sketch of the FEM method
 Structure of a GetDP problem
 Life-HTS
 Content and structure
 Tackling non-linearities
 Integration over time
 Single time step
 Final remarks

Practical examples

References

Outline

Introduction to Life-HTS

Life-HTS: scope and framework
A sketch of the FEM method
Structure of a GetDP problem
Life-HTS
Content and structure
Tackling non-linearities
Integration over time
Single time step
Final remarks

Practical examples

References

Life-HTS, scope and framework

- Life-HTS: Liège University finite element models for High-Temperature Superconductors
- Numerical models for systems that contain both superconducting and ferromagnetic materials

```
life-hts.uliege.be
```

More specifically:

- Transient analysis for calculating
- field maps,
- magnetization,
- eddy currents,
- losses,
- Stable schemes for dealing with non-linear constitutive laws
- Includes a coupled A-H formulation for combining ferromagnetic and superconducting materials

Liège University

Montefiore Institute

The city of Liège

General framework

Under the hood: ONELAB \triangle

- Open Numerical Engineering LABoratory, see onelab. info. ONELAB is the main interface and contains
- Gmsh, a mesh generator,
- GetDP; a finite element solver.
- Developed at ULiège by the research group of C. Geuzaine (in collaboration with J.-F. Remacle, UCLouvain, for Gmsh).
- Open-source, available for Windows, macOS, and Linux.

transformer

induction heating

rotating machine

Outline

Introduction to Life-HTS

Life-HTS: scope and framework
A sketch of the FEM method
Structure of a GetDP problem
Life-HTS
Content and structure
Tackling non-linearities
Integration over time
Single time step
Final remarks

Practical examples

References

A simple 1D boundary value problem

- Solve

$$
-\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)+b(x) u=f, \quad 0 \leq x \leq 1,
$$

with

$$
a(x)=1+x, \quad b(x)=\frac{1}{1+x}, \quad f(x)=\frac{2}{1+x},
$$

and the Dirichlet boundary conditions $u(0)=0$ and $u(1)=1$.

- Solution

$$
u(x)=\frac{2 x}{1+x}
$$

FEM method, step 1

- Approximate $u(x)$ in a finite dimensional space

$$
u_{m}(x)=\phi_{0}(x)+\sum_{\ell=1}^{m} \gamma_{\ell} \phi_{\ell}(x)
$$

with $\phi_{0}(x)=x$ such that $\phi_{0}(0)=0$ and $\phi_{0}(1)=1$, whereas

$$
\phi_{\ell}(0)=0, \quad \phi_{\ell}(1)=0, \quad \ell=1, \ldots, m
$$

Functions $\phi_{\ell}(x)$ with $\ell>0$:

- linearly independent
- satisfy essential ${ }^{1}$ boundary conditions
- their superposition spans an approximation space, \mathcal{H}_{m}^{0}, of dimension m.

[^0]
FEM method, step 2

- Define the residual

$$
r(x)=-\frac{d}{d x}\left(a(x) \frac{d u_{m}}{d x}\right)+b(x) u_{m}-f(x)
$$

and require $r(x)$ to be orthogonal to \mathcal{H}_{m}^{0} :

$$
\left(r, \phi_{k}\right)=0, \quad k=1, \ldots, m
$$

where $(u, v)=\int_{0}^{1} u(x) v(x) d x$. This gives, for $k=1, \ldots, m$

$$
\sum_{\ell=0}^{m} \gamma_{\ell}\left(-\frac{d}{d x}\left(a(x) \frac{d \phi_{\ell}}{d x}\right), \phi_{k}\right)+\left(b(x) \phi_{\ell}, \phi_{k}\right)=\left(f, \phi_{k}\right)
$$

with $\gamma_{0}=1$.

FEM method, steps 3 and 4

- Integrate by part to relax the differentiability requirements on ϕ_{k} and seek for a weak solution,

$$
\sum_{\ell=1}^{m} a_{k, \ell} \gamma_{\ell}=\left(f, \phi_{k}\right)-a_{k, 0}
$$

where
$a_{k, \ell}=\left(a \frac{d \phi_{\ell}}{d x}, \frac{d \phi_{k}}{d x}\right)+\left(b \phi_{\ell}, \phi_{k}\right), \quad k=1, \ldots, m, \quad \ell=0, \ldots, m$.

- Choose functions ϕ_{k} with a restricted support. The resulting matrix elements $a_{k, \ell}$ vanish for most values k, ℓ.
A sparse system is obtained, which saves computational cost.

Numerical example

Function space: use nodal functions (here, $m=3$),

Approximate solution:

Quality of the solution

FEM method: summary

- Need a function space for the approximations u_{m},

$$
u_{m}(x)=\phi_{0}(x)+\sum_{\ell=1}^{m} \gamma_{\ell} \phi_{\ell}(x), \text { with boundary conditions }
$$

- Solve $\left(r, \phi_{k}\right)=0, \ldots$
-in the weak form, to get the linear system

$$
A \cdot x=b
$$

with

$$
A_{k, \ell}=\left(a \frac{d \phi_{\ell}}{d x}, \frac{d \phi_{k}}{d x}\right)+\left(b \phi_{\ell}, \phi_{k}\right), \quad x_{\ell}=\gamma_{\ell}, \quad \text { and } \quad b_{k}=\left(f, \phi_{k}\right)
$$

In GetDP, a problem is described by specifying the function space and the weak form equations!

Outline

Introduction to Life-HTS

Life-HTS: scope and framework
A sketch of the FEM method
Structure of a GetDP problem
Life-HTS
Content and structure
Tackling non-linearities
Integration over time
Single time step
Final remarks

Practical examples

References

GetDP: main structure

- GetDP: General environment for the treatment of Discrete Problems
- In practice, a text script describing the problem definition structure.
- Needs an input mesh (e.g., defined with Gmsh)
- Definition structure based on different objects:

A magnetostatic example: rotating machine

- Rotating machine, 3 MW of power
- Rotor:
- 5 pairs of poles, each pole is a coil of fixed current density $j_{c}=100 \mathrm{~A} / \mathrm{mm}^{2}$
- a rotating iron cylinder ($\mu_{r}=1000$)
- Stator:
- distributed copper coils of fixed, three-phase, currents $=10 \mathrm{~A} / \mathrm{mm}^{2}$.
- a fixed iron cylinder ($\mu_{r}=1000$)

Goal: compute magnetostatic field for different stator-rotor relative angles

GetDP, objects, $1^{\text {st }}$ part

Let's walk you through the objects step by step ...

Magnetostatic example: Group

File motor. pro

Definition of the domains:

```
Group {
    Rotor_Iron += Region[ ROTOR_IRON ];
    Stator_Iron += Region[ STATOR_IRON ];
    B_p = Region [ STATOR_INDUCTOR ];
    A_m = Region[ (STATOR_INDUCTOR+1) ];
    C_p = Region[ (STATOR_INDUCTOR+2) ];
    B_m = Region[ (STATOR_INDUCTOR+3) ];
    A_p = Region[ (STATOR_INDUCTOR+4) ];
    C_m = Region[ (STATOR_INDUCTOR+5) ];
    SurfOut = Region[ ROTOR_BND_IN ];
    SurfOut += Region[ STATOR_BND_OUT ];
    OmegaC_stranded += Region[ { A_p, A_m, ...
}
```

Here, uppercase parameters are integers used in the geometry definition to represent subdomains.

Magnetostatic example: Function

File motor.pro

Define constants, simulation parameters, geometry parameters, ...

```
Function{
    DefineConstant [ec = 1e-4]; // Critical electric field [V/m]
    DefineConstant [jc = {1e8, Name "Input/4 Material Properties/2jc (A/m2)"}];
        // Critical current density [A/m2]
    DefineConstant [convergenceCriterion = 0];
    DefineConstant [tol_energy = 1e-6]; // Relative tolerance on the energy estimates
    DefineConstant [tol_abs = 1e-12]; // Absolute tolerance on nonlinear residual
    DefineConstant [tol_rel = 1e-6]; // Relative tolerance on nonlinear residual
    DefineConstant [tol_incr = 5e-3]; // Relative tolerance on the solution increment
    // Rotation parameters/constants
    rpm = 60*f/p; // Turn per minute
    omega = 2*Pi*rpm/60; // Rotation speed (rad/s)
}
```


FunctionSpace and Constraint

- In motor. pro, define a Dirichlet condition on the exterior boundary Surfout:

```
Constraint {
    { Name a
        Case
            {Region SurfOut ; Value 0 ;}
}
```

- In formulations.pro, define the approximation space for the vector potential $\mathbf{a}=\left(0,0, a_{z}(x, y)\right)$ (node-based):

```
FunctionSpace {
    // 1: In 2D with in-plane b
    // a = sum a_n * psi_n (nodes in Omega_a)
    { Name a_space_2D; Type Form1P;
        BasisFunction {
            { Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
                        Support Omega_a; Entity NodesOf[All]; }
        }
    Constraint {
    { NameOfCoef an; EntityType NodesOf; NameOfConstraint a; }
}}}
```


GetDP, objects, $2^{\text {nd }}$ part

Magnetostatic example: equations

- Start with $\mathbf{b}=\mathbf{c u r l} \mathbf{a}$ and $\mathbf{c u r l} \mathbf{h}=\mathbf{j}$ with $\mathbf{h}=(1 / \mu) \mathbf{b}$.
- The permeability μ is defined piece-wise: $\mu=\mu_{0}$ in SC, $\mu>\mu_{0}$ in FM, ...
- Eliminating \mathbf{h} and \mathbf{b}, we have
curl $(\nu$ curl $\mathbf{a})=\mathbf{j}, \quad$ with $\quad \nu=1 / \mu$.
- Project LHS-RHS on the test functions \mathbf{a}_{k}^{\prime} :
$\left(\operatorname{curl}(\nu \operatorname{curl} \mathbf{a}), \mathbf{a}_{k}^{\prime}\right)_{\Omega}-\left(\mathbf{j}, \mathbf{a}_{k}^{\prime}\right)_{\Omega_{c}}=0$

Magnetostatic example, weak formulation

- Integrate by parts, using the equality
$(\text { curl } \mathbf{u}, \mathbf{v})_{\Omega}=\langle\mathbf{n} \times \mathbf{u}, \mathbf{v}\rangle_{\Gamma}+(\mathbf{u}, \text { curl } \mathbf{v})_{\Omega}$, where

$$
(\mathbf{u}, \mathbf{v})_{\Omega}=\int_{\Omega} \mathbf{u} \cdot \mathbf{v} d \Omega, \quad\langle\mathbf{u}, \mathbf{v}\rangle_{\Gamma}=\int_{\Gamma} \mathbf{u} \cdot \mathbf{v} d \Gamma
$$

to get
$\left(\nu \text { curl a, curl } \mathbf{a}_{k}^{\prime}\right)_{\Omega}+\left\langle\mathbf{n} \times(\nu \text { curl } \mathbf{a}), \mathbf{a}_{k}^{\prime}\right\rangle_{\Gamma}=\left(\mathbf{j}, \mathbf{a}_{k}^{\prime}\right)_{\Omega_{c}}$. Here the surface term $\left\langle\mathbf{n} \times(\nu \text { curl } \mathbf{a}), \mathbf{a}_{k}^{\prime}\right\rangle_{\Gamma}$ vanishes due to boundary conditions.

Magnetostatic example: Formulation

File formulation.pro

The formulation equations are a direct transcription of the weak formulation. Here, the actual formulation, simplified for a linear ferromagnetic law and a static problem:

```
Formulation
    { Name MagDyn_avtot; Type FemEquation;
        Quantity {
        { Name a; Type Local; NameOfSpace a_space_2D; }
        }
        Equation
        Galerkin { [ nu[] * Dof{d a}, {d a} ];
            In MagnLinDomain; Integration Int; Jacobian Vol; }
        Galerkin { [ -js[], {a} ];
            In OmegaC_stranded; Integration Int; Jacobian Vol; }
}}}
```

Notes:

- d is an exterior derivative, here the curl operator.
- Dof $\{\mathrm{a}\}$ denotes an unknown (it goes in \mathbf{x}, in $\mathbf{A} \cdot \mathbf{x}=\mathbf{b}$).
- Each Galerkin term must either be linear w.r.t. Dof \{ \} (bilinear term, LHS A•x) or not involve Dof \{\} (linear term, RHS b). Galerkin terms are summed, with a sum implicitly set to 0 .

Magnetostatic example: Resolution

File resolution.pro

The place where you write the operations to be performed. The simplest one:

```
Resolution {
    { Name MagSta_a;
        System {
            { Name A; NameOfFormulation MagDyn_avtot; }
        }
        Operation {
            Generate[A]; Solve[A]; SaveSolution[A];
        }
    }
}
```

Otherwise, specify

- the non-linear iteration scheme
- the time-stepping strategy

GetDP, objects, $3^{\text {rd }}$ part

Magnetostatic example: Jacobian

File: formulation.pro

Jacobian: associated with the geometry (2D, axisymmetric, ...)

```
Jacobian {
    // For volume integration (Dim N)
    { Name Vol ;
        Case
            If (Axisymmetry == 0)
                // Classical transformation Jacobian
                {Region All ; Jacobian Vol ;}
            Else
            // Axisymmetric problems
            // Second-type, better suited to PerpendicularEdge basis functions
            {Region Omega_a ; Jacobian VolAxiSqu ;}
            Endlf
        }
    }
}
```


Magnetostatic example: Integration

File: formulation.pro

Integration: specifies the type of integration (here, Gauss quadrature) and the number of points

```
Integration {
    { Name Int
        Case {
        { Type Gauss
                        Case {
            { GeoElement Point ; NumberOfPoints 1 ; }
            { GeoElement Line ; NumberOfPoints 3 ; }
            { GeoElement Triangle ; NumberOfPoints 3 ; }
                        }
            }
        }
    }
}
```


Magnetostatic example: PostProcessing / PostOperation

Files formulations.pro and motors.pro

```
PostProcessing
    { Name MagDyn_avtot; NameOfFormulation MagDyn_avtot;
        Quantity {
            { Name a; Value{ Local{ [ {a} ] ;
                In Omega; Jacobian Vol; } } }
            { Name az; Value{ Local{ [ CompZ[{a}] ] ;
                    In Omega; Jacobian Vol; } } }
            { Name b; Value{ Local{ [ {d a} ] ;
                            In Omega; Jacobian Vol; } } }
}}}
```

```
PostOperation {
    { Name MagDyn;
            NameOfPostProcessing MagDyn_avtot;
Operation {
        Print[ az, OnElementsOf Omega , File "res/a.pos", Name "a [Tm]", LastTimeStepOnly
        onelabInterface];
}}}
```

Postoperations can be performed after the resolution (to analyse results), or during the resolution (when auxiliary quantities are needed).

Learning curve

Check the tutorials and the numerous examples on onelab.info!

Magnetostatic example: demo!

Magnetostatic example: tips and tricks

A few tips on the syntax for fields:

- $\operatorname{Dof}\{a\}$: indicates that the field $\{a\}$ is an unknown (i.e. is the vector x in $A \cdot x=b$)
- $\{a\}$: the last computed value of $\{a\}$
- $\{d a\}$: the exterior derivative of $\{a\}$,
- a 0-form field \{a\}, or scalar field ("continuous across nodes"), gives $\{d a\}=\{$ grad $a\}$, a 1-form vector field ("continuous across edges");
- a 1-form field $\{a\}$ gives $\{d a\}=\{$ Curl $a\}$, a 2-form vector field ("continuous across facets")

Outline

```
Introduction to Life-HTS
    Life-HTS: scope and framework
    A sketch of the FEM method
    Structure of a GetDP problem
```

Life-HTS

Content and structure
Tackling non-linearities
Integration over time
Single time step
Final remarks

Practical examples

References

Outline

Introduction to Life-HTS

Life-HTS: scope and framework
A sketch of the FEM method
Structure of a GetDP problem
Life-HTS
Content and structure
Tackling non-linearities
Integration over time
Single time step
Final remarks

Practical examples

References

Back to Life

- Life-HTS was developed by J. Dular, C. Geuzaine, and B. Vanderheyden
- Life-HTS is about solving Maxwell's equations in the magnetodynamic approximation,

$$
\operatorname{div} \mathbf{b}=0 \quad \text { curl } \mathbf{h}=\mathbf{j} \quad \text { curl } \mathbf{e}=-\partial_{t} \mathbf{b},
$$

with
b, the magnetic flux density (T),
h, the magnetic field $(\mathrm{A} / \mathrm{m})$,
j, the current density $\left(A / m^{2}\right)$
e, the electric field, while the displacement current $\partial \mathbf{d} / \partial t$ is ignored.

- Need constitutive relationships relating b to \mathbf{h} and \mathbf{e} to \mathbf{j}.

Constitutive laws

1. High-temperature superconductors (SC):

$$
\mathbf{e}=\rho(\|\mathbf{j}\|) \mathbf{j} \quad \text { and } \quad \mathbf{b}=\mu_{0} \mathbf{h},
$$

where the electrical resistivity is given as

$$
\begin{aligned}
& \quad \rho(\|\mathbf{j}\|)=\frac{e_{c}}{j_{c}}\left(\frac{\|\mathbf{j}\|}{j_{c}}\right)^{n-1}, \\
& \text { with } e_{c}=10^{-4} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$ j_{c}, the critical current density, n, the flux creep exponent, $n \in[10,1000]$.

C.J.G. Plummer and J. E. Evetts, IEEE TAS 23 (1987) 1179.
E. Zeldov et al., Appl. Phys. Lett. 56 (1990) 680.

Constitutive laws, cont'd

2. Ferromagnetic materials (FM): a non-linear, but anhysteretic law:

$$
\mathbf{b}=\mu(\mathbf{b}) \mathbf{h} \quad \text { and } \quad \mathbf{j}=0 .
$$

Typical values (supra50):

- initial relative permeability

$$
\mu_{r i}=1700,
$$

- saturation magnetization $\mu_{0} M=1.3 \mathrm{~T}$.

Eddy currents are neglected.

Constitutive laws, extensions

One can also consider

- conductors and coils,
- permanent magnets,
- hysteretic ferromagnetic materials,
- type-I superconductors (need a London length).

Formulations

Two classes:

- a-formulation, which is b-conform,
- enforces the continuity of the normal component of \mathbf{b},
- much used in electric rotating machine design
- h-formulation, which is h-conform,
- enforces the continuity of the tangential component of \mathbf{h},
- much used for superconducting materials.

These formulations involve the constitutive laws in opposite ways, \Longrightarrow very different numerical behaviors!

a-formulation (or A-v formulation)

- Introduce the vector potential a and electric potential v :

$$
\mathbf{b}=\mathbf{c u r l} \mathbf{a} \quad \text { and } \quad \mathbf{e}=-\partial_{t} \mathbf{a}-\mathbf{g r a d} v .
$$

This guarantees $\operatorname{div} \mathbf{b}=0$ and curl $\mathbf{e}=-\partial_{t} \mathbf{b}$.

- There remains to solve curl $\mathbf{h}=\mathbf{j}=\sigma \mathbf{e}$,

$$
\Rightarrow \quad \text { curl }(\nu \text { curl } \mathbf{a})=-\sigma\left(\partial_{t} \mathbf{a}+\operatorname{grad} v\right),
$$

where $\nu=1 / \mu$ and $\sigma=1 / \rho$ are defined region-wise.

a-formulation in practice

- Function space

$$
\mathbf{a}=\sum_{e \in \Omega} a_{e} \psi_{e} \quad \text { and } \quad v=\sum_{i \in C} V_{i} v_{i}
$$

Ω_{c} : conductors
$\Gamma_{h}:$ where $\mathbf{h} \times \mathbf{n}$ is fixed Here, ψ_{e} are edge functions and v_{i} are source potential functions, while \mathbf{a} is gauged in Ω_{c}^{C}.

- Weak form

$$
\begin{aligned}
\left(\nu \text { curl a, curl } \mathbf{a}^{\prime}\right)_{\Omega}-\left\langle\mathbf{h} \times \mathbf{n}, \mathbf{a}^{\prime}\right\rangle_{\Gamma_{h}} & +\left(\sigma \partial_{t} \mathbf{a}, \mathbf{a}^{\prime}\right)_{\Omega_{\mathrm{c}}} \\
& +\left(\sigma \text { grad } v, \mathbf{a}^{\prime}\right)_{\Omega_{\mathrm{c}}}=0, \\
\left(\sigma \partial_{t} \mathbf{a}, \operatorname{grad} v^{\prime}\right)_{\Omega_{\mathrm{c}}}+\left(\sigma \text { grad } v, \text { grad } v^{\prime}\right)_{\Omega_{\mathrm{c}}} & -\sum_{i \in C} l_{i} \mathcal{V}_{i}\left(v^{\prime}\right)=0
\end{aligned}
$$

h-formulation

- In the non-conducting domain, we have curl $\mathbf{h}=0$ (no current!). Thus, introduce the scalar magnetic potential ϕ such that $\mathbf{h}=-\mathbf{g r a d} \phi$.
- Need to solve curl $\mathbf{e}=-\partial_{t} \mathbf{b}$, together with curl $\mathbf{h}=\mathbf{j}$:

$$
\operatorname{curl}(\rho \text { curl h})=-\partial_{t}(\mu \mathbf{h}),
$$

where μ and ρ are defined regionwise.

- Side note: $\boldsymbol{d i v} \mathbf{b}=0, \forall t$, if it does for $t=0$, as curl $\mathbf{e}=-\partial_{t} \mathbf{b}$.

h-formulation in practice

- Function space

$$
\mathbf{h}=\sum_{e \in \Omega_{c}} \mathbf{h}_{e} \psi_{e}+\sum_{n \in \Omega_{c}^{C}} \phi_{n} \boldsymbol{g r a d} \psi_{n}+\sum_{i \in C} I_{i} \mathbf{c}_{i} .
$$

Ω_{c} : conductors
$\Gamma_{e}:$ where $\mathbf{e} \times \mathbf{n}$ is fixed where ψ_{e}, ψ_{n}, and \mathbf{c}_{i} are edge, nodal, and cut functions.

- Weak form

$$
\begin{aligned}
& \left(\partial_{t}(\mu(\mathbf{h}) \mathbf{h}), \mathbf{h}^{\prime}\right)_{\Omega}+\left(\rho(\text { curl } \mathbf{h}) \text { curl } \mathbf{h}, \text { curl }^{\prime}\right)_{\Omega_{\mathrm{c}}} \\
& \quad-\left\langle\mathbf{e} \times \mathbf{n}, \mathbf{h}^{\prime}\right\rangle_{\Gamma_{e}}+\sum_{i \in C} V_{i} \mathcal{I}_{i}\left(\mathbf{h}^{\prime}\right)=0
\end{aligned}
$$

Why cuts?

- In Ω_{c}^{C}, we have $\mathbf{h}=-\operatorname{grad} \phi$.
- Hence, along a closed contour around a conductor Ω_{c} carrying a current I,

$$
\oint_{\mathcal{C}} \mathbf{h} \cdot d \ell=0 \neq 1 \quad!?
$$

- This is an example of a multiply connected non-conductive domains. Cuts are introduced to obtain simply connected domains [1]; also, ϕ is made discontinuous across cuts.
- Essential conditions: currents are introduced through cut functions.
A. Bossavit, PIEEAPS 135 (1998) 179

A side note on elements

Nodal functions

$$
\phi=\sum_{j=1}^{N} p_{j} \phi_{j} .
$$

Edge functions

$$
\mathbf{a}=\sum_{i=1}^{M} a_{i} \mathbf{a}_{i}
$$

- a_{i} is the line integral of \mathbf{A} along the edge i, i.e. $a_{i}=\int_{\text {edge } \mathrm{i}} d \ell \cdot \mathbf{a}$.
- The tangential component of a is continuous accross elements.
- p_{j} is the value of ϕ on node j.
- ϕ is continuous accross elements.

The structure of Life $\mathbb{1 D}$ (1)

- Based on a time-varying and non-linear weak formulations,

$$
\mathbf{A}(\mathbf{x}, t) \cdot \mathbf{x}=\mathbf{b}(t)
$$

where $\mathbf{x}=(\mathbf{a}, v)$ or $x=(\mathbf{h}, \phi)$.

- Structure: two imbricated loops,

1. time-stepping, with adaptative time steps,
2. iterative solution of the non-linear weak formulation.

Outline

Introduction to Life-HTS
 Life-HTS: scope and framework
 A sketch of the FEM method
 Structure of a GetDP problem
 Life-HTS
 Content and structure
 Tackling non-linearities
 Integration over time
 Single time step
 Final remarks

Practical examples

References

To fix ideas: A superconducting ring

Consider a superconducting ring subjected to a time-varying flux, $\dot{\phi}$.
The ring is modelled as a non-linear lump resistor with

$$
R(|I|)=\frac{V_{c}}{I_{c}}\left(\frac{|I| \mid}{I_{c}}\right)^{n-1}
$$

where V_{C} and I_{C} are characteristic voltage and current, and n is a critical index.

Circuit equation:

$$
\begin{equation*}
\dot{\Phi}=R(|I|) I+L \dot{L}, \tag{1}
\end{equation*}
$$

can be solved in one of two ways!

Ring, $1^{\text {st }}$ way: solve for the current I

- Discretize in time: $t_{j}=j \Delta t, j=0,1,2, \ldots$,
- Consider the implicit Euler method with $\dot{I} \approx\left(I_{j}-I_{j-1}\right) / \Delta t$,

$$
\dot{\Phi}=R(|I|) I+L \dot{l} \quad \rightarrow \quad \dot{\Phi}_{j}=V_{c} \frac{\left|I_{j}\right|^{n-1} I_{j}}{I_{c}^{n}}+L \frac{I_{j}-I_{j-1}}{\Delta t}
$$

- Make this adimensional by introducing $x=a l_{j} / I_{c}$, to obtain

$$
\begin{equation*}
b=|x|^{n-1} x+x, \quad(l \text {-form }) \tag{2}
\end{equation*}
$$

where

$$
a=\left(\frac{V_{c} \Delta t}{L I_{c}}\right)^{1 /(n-1)} \quad \text { and } \quad b=\frac{\dot{\Phi}_{j}+L I_{j-1} / \Delta t}{a L I_{c} / \Delta t}
$$

Ring, $2^{\text {nd }}$ way: solve for the voltage drop across R

- Solve now in terms of $V_{j}=R l_{j}$,

$$
\dot{\Phi}=R(| | \mid) I+L i \quad \rightarrow \quad \dot{\Phi}_{j}=V_{j}+L \frac{I_{c}\left|V_{j} / V_{c}\right|^{1 / n-1} V_{j} / V_{c}-I_{j-1}}{\Delta t} .
$$

- Make this adimensional with $x=c V_{j} / V_{c}$, to get

$$
\begin{equation*}
d=|x|^{1 / n-1} x+x, \quad(V \text {-form }), \tag{3}
\end{equation*}
$$

where

$$
c=\left(\frac{\Delta t}{L I_{c}}\right)^{n /(n-1)} \quad \text { and } \quad d=\frac{\dot{\Phi}_{j}}{c}+\frac{L I_{j-1}}{c \Delta t} .
$$

Ring example, summary

In each case, need to solve an equation of the form $f(x)=$ Constant:

$$
f(x)=\underset{\text { l-form }}{|x|^{n-1} x+x}
$$

(\sim h-conform: Ampere)

$$
\begin{aligned}
& f(x)=|x|^{1 / n-1} x+x \\
& \text { V-form }
\end{aligned}
$$

(\sim b-conform: Faraday-Lenz)

Solving a non-linear equation:

1. Picard iteration method (a fixed point method):

- Write $f(x)$ as $f(x)=A(x) x$.
- Get a first estimate x_{0}.
- At each iteration i :
- solve $A\left(x_{i}\right) x=b$;
- $x_{i+1}:=x$,
- $i:=i+1$ and loop.
- May converge for wide range of first estimates x_{0}.
- Convergence is slow!

Solving a non-linear equation: 2) Newton-Raphson method

2. Newton-Raphson iterative method:

- Get a first estimate x_{0}.
- At each iteration i,

$$
x_{i+1}:=x_{i}-\frac{f\left(x_{i}\right)}{d f\left(x_{i}\right) / d x}
$$

- Quadratic convergence, if the initial estimate x_{0} is close enough.

A second look at the functions f

$f(x)=|x|^{n-1} x+x$
V-form (b-conform)

$f(x)=|x|^{1 / n-1} x+x$
I-form (h-conform)

Which of Picard or Newton-Raphson should one use in each case?

Warning!

Beware of cycles!

Cycles can occur in each method, depending on the shape of the function $f(x)$:

Picard iteration on an l-form. Prefer Newton-Raphson!

N -R iteration on a V-form. Prefer Picard!

Superconducting ring, conclusions

- At each time step, need to solve for a non-linear equation of the form $f(x)=b$.

$$
f(x)=x^{n}+x
$$

I-form (h-conform)

- Solve with Newton-Raphson
- Up to a quadratic convergence

$$
f(x)=x^{1 / n}+x
$$

V-form (b-conform)

- Solve with Picard
- Slow convergence

Superconducting ring: more comments

- Conclusions can be generalized to 1D, 2D, and 3D geometries:
- I-form \mapsto h-conform formulations, use Newton-Raphson;
- V-form $\mapsto \mathrm{b}$-conform formulations, use Picard.
- When cycles occur, use relaxation methods?

Maybe, but we found no systematic stable scheme.

Illustration for a superconducting cube

System

$$
\begin{aligned}
& \text { Side } a=10 \mathrm{~mm} . \\
& \mu_{0} \mathbf{h}_{s}=\hat{z} B_{0} \sin (2 \pi f t), \\
& \text { with } B_{0}=200 \mathrm{mT}, \\
& f=50 \mathrm{~Hz}, \\
& j_{c}=10^{8} \mathrm{~A} / \mathrm{m}^{2} \text { and } \\
& n=100 .
\end{aligned}
$$

Current density distribution

(a) Newton-Raphson technique.

(b) Picard technique.

Demonstration

Magnetization of a superconducting pellet: phenomenology

Magnetize a cylindrical pellet of aspect ratio 0.5 (height/diameter) in an axial field of maximum $0.6 \times$ the penetration field:

E. H. Brandt, PRB 58 (1998) 6506

\rightarrow movie case2.mpg

Demonstration

Magnetization of a superconducting pellet: h - and a - formulations

How about magnetic laws?

Conclusions on the non-linearities also apply to the magnetic constitutive laws:

- For an a-formulation:
- the term $\left(\nu \text { curla, curl } \mathbf{a}^{\prime}\right)_{\Omega}$ involves $\nu \mathbf{c u r l} \mathbf{a}$, or \mathbf{h} as a function of \mathbf{b}

$$
\Rightarrow \text { use Newton-Raphson }
$$

- For an h-formulation:
- the term $\left(\partial_{t}\left(\mu \mathbf{h}, \mathbf{h}^{\prime}\right)\right)_{\Omega}$ involves $\mu \mathbf{h}$, or \mathbf{b} as a function of \mathbf{h}
\Rightarrow use Picard

Non-linearities: take-home message

a	SC	FM
Laws	${ }^{i}+$	${ }^{n} \operatorname{Lem}_{b}$
Method	Picard	Newton

h	SC	FM
Laws	${ }^{\circ}{ }^{\circ} \mathrm{sc}$	${ }^{\circ}+\sqrt{{ }^{\mathrm{FM}}}$
Method	Newton	Picard

Coupled formulation

Combine the most efficient formulations, i.e.,

- for SC: h-formulation with Newton-Raphson,
- similarly, for FM: a-formulation with Newton-Raphson

Need a coupling through the boundary Γ_{m} :

$$
\begin{aligned}
& \left(\partial_{t}(\mu \mathbf{h}), \mathbf{h}^{\prime}\right)_{\Omega_{\mathrm{sc}}}+\left(\rho \text { curl } \mathbf{h}, \text { curl } \mathbf{h}^{\prime}\right)_{\Omega_{\mathrm{sc}}} \\
& \quad+\left\langle\partial_{t} \mathbf{a} \times \mathbf{n}_{\Omega_{\mathrm{SC}}}, \mathbf{h}^{\prime}\right\rangle_{\Gamma_{\mathrm{m}}}=0, \\
& \left(\nu \text { curl a, curl } \mathbf{a}^{\prime}\right)_{\Omega_{\mathrm{FM}+\mathrm{air}}}-\left\langle\mathbf{h} \times \mathbf{n}_{\Omega_{\mathrm{FM}+\mathrm{air}}}, \mathbf{a}^{\prime}\right\rangle_{\Gamma_{\mathrm{m}}}=0 .
\end{aligned}
$$

Coupled formulation: efficiency

From TAS 30 (2020) 8200113
Example: SC cylinder of $12.5 \mathrm{~mm}, 5 \mathrm{~mm}$ height, $j_{c}=3 \times 10^{8} \mathrm{~A} / \mathrm{m}^{2}, n=20$, FM: supra50, cylinder of same size, 5 T applied in ZFC and reduced to 0 at $25 \mathrm{mT} / \mathrm{s}$.

Formulation	Total h	Total a	Coupled
Linearization SC	NR	Pi	NR
Linearization FM	NR	NR	NR
Extrapolation	$1^{\text {st }}$	$2^{\text {nd }}$	$1^{\text {st }}$
Coarse	3268	4381	1071
Medium	4083	7539	1931
Fine	4422	14594	3753

Mesh	Coarse	Medium	Fine
Dofs	840	2800	10800
$\Delta t(\mathrm{sec})$	4	2	1

\rightarrow For the fine mesh, a speedup factor of ~ 1.2 !

Outline

Introduction to Life-HTS
 Life-HTS: scope and framework
 A sketch of the FEM method
 Structure of a GetDP problem
 Life-HTS
 Content and structure
 Tackling non-linearities
 Integration over time
 Single time step
 Final remarks

Practical examples

References

Adaptative time-stepping

Parameters:

- $\gamma=1 / 2$
- $\beta=2$
- $i_{\text {fast }}=i_{\text {max }} / 4$
- h-formulation: $i_{\text {max }}=500$
- a-formulation:
$i_{\text {max }}=60$

Choosing the first iterate

Best results:

- $1^{\text {st }}$ order for the h-formulation,
- $2^{\text {nd }}$ order for the a-formulation.

Outline

Introduction to Life-HTS
 Life-HTS: scope and framework
 A sketch of the FEM method
 Structure of a GetDP problem
 Life-HTS
 Content and structure
 Tackling non-linearities
 Integration over time
 Single time step

Final remarks

Practical examples

References

Single time step

- For large values of n, can reduce the \# of time steps in the a-formulation.
- Here, for a magnetization cycle
- lines: h-formulation with 300 time steps
- dots: a-formulation with 20 time steps
- In practice, accurate for \mathbf{j} and \mathbf{b}, but \mathbf{e} is underestimated!

Outline

Introduction to Life-HTS
 Life-HTS: scope and framework
 A sketch of the FEM method
 Structure of a GetDP problem

Life-HTS
Content and structure
Tackling non-linearities
Integration over time
Single time step
Final remarks

Practical examples

References

Convergence criterion

- The residual is sometimes misleading (specifically with coupled formulation).
- Instead, we opted for monitoring the electromagnetic power, P:
- h-formulation:

$$
P=\left(\partial_{t}(\mu \mathbf{h}), \mathbf{h}\right)_{\Omega}+(\rho \mathbf{j}, \mathbf{j})_{\Omega_{\mathrm{c}}},
$$

with $\mathbf{j}=\mathbf{c u r l} \mathbf{h}$;

- a-formulation:

$$
P=\left(\partial_{t} \mathbf{b}, \nu \mathbf{b}\right)_{\Omega}+(\sigma \mathbf{e}, \mathbf{e})_{\Omega_{\mathrm{c}}},
$$

with $\mathbf{b}=\mathbf{c u r l} \mathbf{a}$ and $\mathbf{e}=-\partial_{t} \mathbf{a}-\operatorname{grad} v$.

- In practice, stop when $|\Delta P / P|$ is small enough.

Gauging the vector potential (spanning tree technique)

Required in 3D, or 2D with in-plane currents

$$
\mathbf{a}=\sum_{i} a_{i} \psi_{i}
$$

For simplicity, assume no potential source v :

- in the conducting region Ω_{c}, \mathbf{a} is unique as $\mathbf{e}=-\partial_{t} \mathbf{a}$, with $\mathbf{e}=\mathbf{j} / \sigma$;
- in the non-conducting region Ω_{c}^{C}, \mathbf{a} is not unique, \rightarrow gauge:
- Number of variables $a_{i}=$ number of edges, too many!
- Number of independent degrees of freedom = number of facets (one element of magnetic flux per facet).
Hence,

1. construct a suitable tree in the mesh,
2. impose $a_{i}=0$ on the edges of this tree.

Newton-Raphson method for isotropic constitutive laws relating vector quantities

- Consider a constitutive law of the form

$$
\mathbf{a}(\mathbf{x})=g(\|\mathbf{x}\|) \mathbf{x} .
$$

Example: $\mathbf{e}=\rho \mathbf{j}$, or $\mathbf{b}=\mu \mathbf{h}, \ldots$

- To iterate with the Newton-Raphson method, linearize:

$$
a_{i}\left(\mathbf{x}^{j+1}\right) \approx a_{i}\left(\mathbf{x}^{j}\right)+\sum_{k=1,3}\left(x_{k}^{j+1}-x_{k}^{j}\right) \frac{\partial a_{i}}{\partial x_{k}^{j}},
$$

where j is the iteration index.

- This expansion can be cast in the form

$$
\mathbf{a}\left(\mathbf{x}^{j+1}\right) \approx \mathbf{a}\left(\mathbf{x}^{j+1}\right)+\mathbf{J} \cdot\left(\mathbf{x}^{j+1}-\mathbf{x}^{j}\right)
$$

where \mathbf{J} is the 3×3 Jacobian matrix.

Generic form of the Jacobian matrix

- Carrying out the partial derivatives, one easily gets

$$
\mathbf{J}_{i k}=\frac{\partial a_{i}}{\partial x_{k}}=\delta_{i k} g\left(\left\|\mathbf{x}^{j}\right\|\right)+x_{i} x_{k} \frac{\partial g\left(\left\|\mathbf{x}^{j}\right\|\right) / \partial\left\|\mathbf{x}^{j}\right\|}{\left\|\mathbf{x}^{j}\right\|} .
$$

- A few examples can be found in the appendix of TAS 30 (2020) 8200113,
- $\mathbf{e}=\rho \mathbf{j}$ and $\mathbf{j}=\sigma \mathbf{e}$ with a power law,
- $\mathbf{b}=\mu \mathbf{h}$ and $\mathbf{h}=\nu \mathbf{b}$ with a non-linear magnetic law.
- Useful trick: sometimes, it is better to consider g as a function of $\|\mathbf{x}\|^{2}$, as this provides an additional power of $\|\mathbf{x}\|$ and avoids a divergence as $\|\mathbf{x}\| \rightarrow 0$.

Outline

Introduction to Life-HTS
 Life-HTS: scope and framework A sketch of the FEM method Structure of a GetDP problem
 Life-HTS
 Content and structure
 Tackling non-linearities
 Integration over time
 Single time step
 Final remarks

Practical examples

References

Magnetization of a superconducting pellet

A demonstration of the h - and a-formulations in a problem with induced currents. Possibility to explore the method of large time steps in the a-formulation.

Magnetostatics in an electrical rotating machine

Magnetostatic resolution of the combined field for a rotor with an SC coil (imposed currents) and stator copper windings.

Rotor with trapped field magnets, magnetization with the stator winding

Example of a coupled formulation for an induced current problem.

Coupled formulation with transport currents

Example of a coupled formulation for a transport current problem.

Outline

Introduction to Life-HTS
 Life-HTS: scope and framework
 A sketch of the FEM method
 Structure of a GetDP problem
 Life-HTS
 Content and structure
 Tackling non-linearities
 Integration over time
 Single time step
 Final remarks

Practical examples
References

References

- Onelab website, with codes, examples, and tutorials: onelab. info
- Life-HTS website: http://www.life-hts.uliege.be/
- Finite Element Formulations for Systems with High-Temperature Superconductors,
J. Dular, C. Geuzaine, and B. Vanderheyden, TAS 30 (2020) 8200113.
- Modélisation du champ magnétique et des courants induits dans des systèmes tridimensionnels non linéaires, P. Dular, thesis (1996) U. Liège.
- High order hybrid finite element schemes for Maxwell's equations taking thin structures and global quantities into account, C. Geuzaine, thesis (2001) U. Liège.
- The FEM method for electromagnetic modeling,
G. Meunier ed., Wiley, 2008.

That's Life!

Contacts: \{b.vanderheyden,julien.dular,cgeuzaine\}@uliege.be

[^0]: ${ }^{1}$ as opposed to natural conditions, arising from an integral term in the weak form.

