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What Formulation Should One Choose for Modeling a 3D HTS
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We discuss the relevance of several finite-element formulations for nonlinear systems containing high-temperature superconductors
(HTS) and ferromagnetic materials (FM), in the context of a 3D motor pole model. The formulations are evaluated in terms of
their numerical robustness and efficiency. We propose a coupled h-φ-a-formulation as an optimal choice, modeling the problem with
an a-formulation in the FM and an h-φ-formulation in the remaining domains. While maintaining a low number of degrees of
freedom, the h-φ-a-formulation guarantees a robust resolution and strongly reduces the number of iterations required for handling
the nonlinearities of HTS and FM compared to standard formulations.
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I. INTRODUCTION

MODELING the magnetic response of high-temperature
superconductors (HTS) is important for many applica-

tions. One of the main modeling tools is the finite element
method with the E-J power law in HTS [1]. The resulting
system of equations is strongly nonlinear and requires one
to choose the formulation carefully to obtain both accurate
results and fast resolutions. Coupling HTS with ferromagnetic
materials (FM) introduces additional difficulties. In particular,
the power law in HTS and magnetic law in FM are most
efficiently solved with distinct formulations [2].

In this work, we compare the computational cost of a number
of formulations with both HTS and FM for a 3D problem.

In section II, we describe the 3D problem and define the
nonlinear constitutive laws. In section III, we introduce the
different formulations that will be compared. We first present
classical h- and b-conform formulations. Then, we propose four
different coupled formulations that involve the material laws
in an efficient manner. To the best of our knowledge, the a-j-
formulation (in 3D), h-φ-b-formulation, and h-φ-a-formulation
are original contributions. In section IV, we compare the
formulations in terms of the associated computational time.

II. MAGNET POLE PROBLEM

We consider four HTS bulks placed on top of an iron
substrate, and magnetized by an inducting coil. Exploiting
symmetry, one eighth of the geometry is modeled, as shown
in Fig. 1. This geometry is relevant in applications, e.g., [3].

We model the magnetic response of the system with the
magneto-quasistatic approximation, i.e., we neglect the dis-
placement current in Maxwell’s equations. In HTS, µ = µ0

and we assume a power law for the electrical resistivity [4]:

ρ =
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Fig. 1: Geometry of one eighth of the 3D geometry. The red dashed line is
where the magnetic flux density is represented in Fig. 3, at ε = 2 mm above the
HTS bulk and coil top surfaces, in the symmetry plane. Bulk height: 17.7 mm.
Bulk radius: 15 mm. Numerical domain radius: 270 mm.

with ec = 10−4 V/m, jc the critical current density and n the
power index. Both jc and n depend on the norm of the local
magnetic flux density [4]:

jc(b) =
jc0

1 + ‖b‖/b0
, n(b) = n1 +

n0 − n1

1 + ‖b‖/b0
, (2)

with jc0 = 5 × 108 A/m2, b0 = 0.5 T, n0 = 21, and n1 = 5
(representative values for YBCO pellets). The iron is assumed
non-conducting and its permeability µ follows a saturation
law based on experimental data (saturation at ≈ 2.2 T). The
nonlinearities associated with both materials are depicted in
Fig. 2.

The inducting coil contains 55.5 turns and carries an im-
posed current Is defined by

Is(t) =

{
Imax sin(πt/2T ), t < T,

Imax e
−(t−T )/τ , t > T,

(3)

with Imax = 2 kA, T = 2 ms, and τ = 10 ms. Eddy currents
in the coil are neglected. We model the response of the system
from a virgin state at t = 0 (zero-field cooled) to t = 10T .
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Fig. 2: Nonlinear laws involved in the problem.

III. FINITE ELEMENT FORMULATIONS

We now present the formulations that will be compared.
First, we introduce standard h-conform and b-conform formu-
lations. Motivated by observations on their numerical behavior,
we then introduce coupled formulations in order to improve
their efficiency. A summary of the considered formulations is
proposed in Table I.

The modeled domain Ω is decomposed into a conducting
part, Ωc, containing the HTS bulk, and a non-conducting part
ΩC

c , containing the air, the iron, and the coil. In addition, the
iron is referred to as Ωm, and its complementary ΩC

m. The coil
is denoted by Ωs.

The geometry is discretized with a finite element mesh. In
the following, unknown and test functions are directly defined
in discrete function spaces associated with the mesh.

A. Standard h-conform Formulations

We consider common h-conform formulations that are writ-
ten as a weak form of Faraday’s law. The unknown field is the
magnetic field h, sought in a specific function space, such that(

∂t(µh) ,h′
)

Ω
+
(
ρ curlh , curlh′

)
Ωc

= 0 (4)

holds for all h′ in the same space (for conciseness, we consider
homogeneous boundary conditions). The choice of the function
space determines the resulting number of degrees of freedom
(DOFs). We present here two options.

First, in the full h-formulation, the magnetic field is dis-
cretized with edge functions on the whole domain, and a spu-
rious resistivity ρs is introduced in ΩC

c [1]. Despite leading to
more unknowns and ill-conditioned matrices [7], this approach
is still popular in proprietary softwares, e.g., COMSOL.

A second option is to strongly impose a zero current
density in non-conducting regions by carefully defining the
function space, leading to the well-known h-φ-formulation [8].
Multiply connected subdomains, as is the case here for the
complementary of the coil, are handled with discontinuous or
cohomology basis functions. Here, a precomputed source field
hs reproducing the source current density in the coil Ωs is
included in the space of h.

Note that other h-conform formulations also exist, such as
the t-ω-formulation [9]. Because it involves the nonlinearities
in the same manner (ρ and µ), the overall conclusions are
expected to be similar to those for h- or h-φ-formulations.

B. Standard b-conform Formulations

Standard b-conform formulations are expressed as a weak
form of Ampère’s law. The unknown field is a vector potential
a, with curla = b, sought in a given function space, such that

(ν curla , curla′)Ω + (σ ∂ta ,a
′)Ωc

= (js ,a
′)Ωs

(5)

holds for all a′ in the same space, where js is the imposed
current density in the coil, ν = 1/µ is the reluctivity, and
σ = 1/ρ is the conductivity. In our problem, e = −∂ta [2].

The vector potential is not unique in ΩC
c , and can be gauged.

For example, a co-tree gauge reduces the number of DOFs,
and leads to what we call the a-formulation [8]. As with the
h-conform formulations, we can also introduce a spurious non-
zero conductivity σs in ΩC

c , and hence avoid further gauging
steps. We refer to this choice as the ā-formulation. Note that
gauging is not mandatory with σs = 0. The ungauged system
is singular, but depending on the linear solver, this is not
necessarily an issue, e.g., for some iterative solvers.

C. Surface-Coupled Formulations

The important differences between the h-conform and b-
conform formulations are the involved nonlinear laws. It has
been observed that ρ and ν are easier to handle than σ and
µ, mostly due to the shape of the associated constitutive
relationship [2]. Therefore, because neither one of the above
formulations involves both ρ and ν, there is a motivation for
investigating coupled formulations.

In this section, we present formulations with surface cou-
pling. The domain Ω is decomposed in two parts: Ωh, to be
solved with the h-φ-formulation, and Ωa, to be solved with
the a-formulation. The HTS is always put in Ωh so as to
involve ρ and the FM is always put in Ωa so as to involve
ν. The remaining domains can be either put in Ωh or in Ωa.
We consider two choices. In the h-φ-a-formulation, only the
FM domain Ωm belongs to Ωa, and an h-φ-formulation is used
in ΩC

m. In the h-a-formulation, we place all non-conducting
domains ΩC

c in Ωa [2], [10].
In both cases, the coupling is performed via the common

boundary Γm and the formulation amounts to finding h and a
such that(
µ0∂th ,h

′)
Ωh

+
(
ρ curlh , curlh′

)
Ωh,c

=
〈
∂ta× nΩa ,h

′〉
Γm

(ν curla , curla′)Ωa
− (js ,a

′)Ωs∩Ωa
= 〈h× nΩa

,a′〉Γm

(6)

hold for all h′ and a′, with Ωh,c the conducting part of Ωh
(here the HTS domain), and nΩa

the outer normal of Ωa. For
this mixed formulation to be stable, either h or a should be
enriched with second-order elements on Γm if linear elements
are used elsewhere [6].

D. Volume-Coupled Formulation

A second kind of mixed formulations is obtained when
auxiliary fields are added in the volume of a region. For
example, the h-φ-formulation is not optimal because of the
shape of the permeability law µ, which is difficult to handle



TABLE I: Description of the different formulations

NL laws Function space Number of DOFs σ 6= 0 in ΩC
c ?

h ρ, µ h ∈ H(Ω) = {h ∈ H(Ω)} Edges in Ω Yes
h-φ ρ, µ h ∈ Hφ(Ω) = {h ∈ H(Ω) | curlh = 0 in ΩC

c } Edges in Ωc + Nodes in ΩC
c No

ā σ, ν a ∈ Ā(Ω) = {a ∈ H(Ω)} Edges in Ω (Yes)∗

a σ, ν a ∈ A(Ω) = {a ∈ H(Ω) | co-tree gauge in ΩC
c } Edges in Ωc + Facets in ΩC

c No
h-a ρ, ν h ∈ Hφ(Ωc), a ∈ A(ΩC

c ) Edges in Ωc + Facets† in ΩC
c No

h-φ-a ρ, ν h ∈ Hφ(ΩC
m), a ∈ A(Ωm) Edges in Ωh,c + Nodes† in ΩC

h,c + Facets in Ωm No
h-φ-b ρ, ν h ∈ Hφ(Ω), b ∈ (H3(Ωm))3 Edges in Ωc + Nodes in ΩC

c + Volumes (×3) in Ωm No
a-j ρ, ν a ∈ A(Ω), j ∈ A(Ωc) Edges (×2) in Ωc + Facets in ΩC

c No

NL stands for nonlinear. H(Ω) is the finite dimensional subset of the curl-conform space H(curl; Ω) generated by Whitney edge elements on the mesh in Ω
[5]. (H3(Ωm))3 is the space of piecewise constant vector functions (3 components) per element in Ωm. ∗For the ā-formulation, choosing σ = 0 in ΩC

c makes
the system singular, but this is not necessarily an issue as some linear solvers do not require uniqueness of the solution. †For surface-coupled formulations, a
local enrichment is necessary on Γm to guarantee stability [6]. In 3D, this adds twice the number of facets on Γm as DOFs (to enrich A, our choice for the
h-a-formulation), or once the number of edges on Γm (to enrich Hφ, our choice for the h-φ-a-formulation).

in a robust manner. To introduce the reluctivity ν instead, the
formulation can be modified as follows: find h and b such that(
∂tb ,h

′)
Ωm

+
(
µ0∂th ,h

′)
ΩC

m
+
(
ρ curlh , curlh′

)
Ωc

= 0(
νb , b′

)
Ωm
−
(
h , b′

)
Ωm

= 0 (7)

holds for all h′ and b′, where the auxiliary flux density b
is only defined in Ωm to minimize the additional DOFs. The
function space for b is chosen to be piecewise constant per
volume element. We refer to this formulation as the h-φ-b-
formulation.

The analogous approach starting from the a-formulation
consists in introducing j as an auxiliary field and solve the
following mixed problem, so as to involve the resistivity ρ:
find a and j such that

(ν curla , curla′)Ω − (j ,a′)Ωc
= (js ,a

′)Ωs(
ρj , j′

)
Ωc

+
(
∂ta , j

′)
Ωc

= 0
(8)

holds for all a′ and j′, with j defined in the same space than
a in Ωc. This formulation is close to the a-v-j-formulation
proposed in [11] for 2D problems. Here, because the problem
does not involve a scalar electric potential, we refer to this
formulation as the a-j-formulation.

IV. COMPARISON ON THE 3D PROBLEM

We implemented the eight formulations in GetDP [12].
Model files are available at www.life-hts.uliege.be. Models
were run on one 2.9 GHz AMD Epyc Rome 7542 CPU.

A. Implementation Details

Formulations are integrated over time with 128 time steps.
Linear systems are solved with the direct sparse solver
MUMPS. An iterative Newton-Raphson method is used for
ρ and ν. For σ and µ, we were only able to obtain a
robust method by using Picard fixed point iterations. Even
though the use of relaxation factors on the Newton-Rapshon
iterations sometimes help, we have not found a robust set
of numerical parameters allowing convergence in all cases.
Iterations typically enter cycles that are difficult to avoid [2].

The convergence criterion is based on the instantaneous
power P = (∂tb ,h)Ω + (j , e)Ωc

. Iterations stop when the
relative change of P is smaller than 10−6 (or 10−5 in case of
fixed point iterations) in each of the sub-domains.

For the h-formulation, the spurious resistivity in air is fixed
to ρs = 10−3 Ωm. For the ā-formulation, σs = 1 S/m. With
these values, we have not observed any significant impact of
the spurious parameters on the numerical solution quality.

B. Results

We simulate the problem with the eight formulations on the
same mesh. Global and local solutions agree with each other.
The total hysteresis loss in the bulk is given in Table II, the
difference between the values is at most 1%. The norm of b
along the dashed line of Fig. 1 is represented in Fig. 3 for the
a- and h-φ-formulations. All other formulations yield results
that are visually indistinguishable from these two formulations.
Results also match inside the HTS and FM. The current density
in the HTS is represented in Fig. 4.
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Fig. 3: Norm of the magnetic flux density at ε = 2 mm above the system,
along the dashed line represented in Fig. 1. The upper plot is at t = 0.25T
and the lower plot at t = 3.5T . Curves from h-, h-φ-a-, h-φ-b-formulations
are indistinguishable from that of the h-formulation (h-conform field in air).
The same is true for curves from ā-, h-a-, a-j-formulations in comparison
with those from the a-formulation (b-conform field in air).

A good accuracy can be achieved with all formulations.
However, the computational cost associated with each of them
is not equivalent, see Table II. First, the number of DOFs
is strongly affected by the choice of function spaces. When
possible, is it always preferable to introduce a magnetic scalar
potential φ and to gauge the magnetic vector potential a in
ΩC

c . Also, using φ in air instead of a in surface-coupled
formulations leads to fewer DOFs.

www.life-hts.uliege.be
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Fig. 4: Current density from the h-φ-a-formulation in the bulk during the
magnetizing pulse: (a)-(b) at t = 0.25T , and (c)-(d) during relaxation at
t = 3.5T . (a)-(c) x-component jx in the bulk, and (b)-(d) full vector j in
three planes.

TABLE II: Comparison of the different formulations

HTS loss (J) # DOFs # iterations Time/it. Total time
h 6.35 35,532 4,057 3.3s 3h42
h-φ 6.36 12,172 3,937 1.4s 1h33
ā 6.38 29,010 2,955 3.1s 2h33
a 6.39 26,964 3,147 2.1s 1h48
h-a 6.31 32,045 1,124 2.7s 0h50
h-φ-a 6.33 15,776 1,108 2.1s 0h39
h-φ-b 6.37 20,821 1,104 3.2s 0h58
a-j 6.34 36,019 2,225 3.6s 2h15

Performance figures for the 128 time steps of the eight formulations with
linear elements (except on the coupling boundary for coupled formulations
where second order elements are used). HTS loss is the total hysteresis loss in
the HTS bulk from t = 0 to t = 10T . Results differ by maximum 1%. Picard
fixed point iterations were used for the first four formulations, which explains
the large associated number of iterations. With more efficient method such as
Newton-Raphson iterations (with or without relaxation factors), we have not
obtained robust behaviors.

Second, the number of iterations required to reach conver-
gence strongly depends on the involved nonlinear laws. For
the h- and h-φ-formulations, the large number of iterations is
due to the fixed point iterations on the permeability of the FM.
We observed that in some cases, a Newton-Raphson scheme
(with or without relaxation factors) applied on the permeability
works without difficulty with a CPU time similar to that of
coupled formulations, but this is not guaranteed in general.
By contrast, for the ā- and a-formulations, the conductivity in
HTS is significantly more difficult to handle. We only obtained
convergence with a fixed point method.

For the coupled formulations, in surface and in volume, the
number of iterations is directly reduced thanks to the use of
the Newton-Raphson method on ρ and ν, without needing any
parameter tuning.

Surface-coupled formulations appear to be the most efficient
choices, especially the h-φ-a. Volume-coupled formulations
introduce more DOFs but may possibly be simpler to imple-
ment. Note that for modeling homogenized HTS-FM hybrids,
e.g., stack of tapes, the volume coupling approach could be a
convenient choice.

Interestingly, the CPU time per iteration does not scale
directly with the number of DOFs. The matrix structures
associated with the formulations are different and this also

influences the linear solver resolution. Further investigations
would provide a better understanding of this numerical behav-
ior.

V. CONCLUSION

In this work, we compared the relevance of several finite
element formulations for modeling 3D systems with high-
temperature superconductors and ferromagnetic materials. To
deal with the associated nonlinearities, the most efficient choice
in terms of CPU time was a coupled h-φ-a-formulation with
surface coupling. While ensuring accurate results, this formula-
tion combines a good robustness and a low number of degrees
of freedom, thus leading to efficient simulations.
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