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Finite Element Formulations for Systems with
High-Temperature Superconductors

Julien Dular, Christophe Geuzaine, and Benoît Vanderheyden

Abstract—In this paper, we consider finite element models
for high-temperature superconductors and compare two dual
formulations, either magnetic-field conforming or magnetic-flux-
density conforming. The electrical resistivity of superconductors
is described by a power law and is strongly nonlinear. We com-
pare the accuracy and the efficiency of the dual formulations by
starting from simple considerations on the concavity / convexity
of the constitutive law involved in each case. We then study
the numerical behavior of each formulation in 1D, 2D, and 3D
problems and compare their results against benchmarks. We
draw general recommendations for the choice of a formulation,
an iteration scheme for treating the corresponding linearized
constitutive law, and a time-stepping extrapolation scheme. This
approach is extended to soft ferromagnetic materials with a
saturation law. Since the outcome of our analysis shows that
recommended formulations for treating ferromagnets are just
the opposite of those for treating superconductors, we suggest a
coupled formulation for systems where both types of materials
are present. The coupled formulation is shown to be accurate
and more efficient than single formulations applied indistinctly
to all materials.

Index Terms—Finite element analysis, high-temperature super-
conductors, magnetic materials, nonlinear equations.

I. INTRODUCTION

MODELING accurately and efficiently the magnetic re-
sponse of high-temperature superconductors (HTS) is

of high importance in numerous applications, such as energy
transport and storage [1], trapped-field magnets, magnetic
shields, and levitating devices [2]. Among the existing nu-
merical methods, the finite element (FE) method allows one
to tackle complex geometries and is commonly used for
the design and analysis of engineering devices [3]. The FE
method expresses the problem in a weak form and different
formulations of the same problem are available. More specif-
ically in the framework of magnetodynamics, two classes of
dual formulations exist: h-conform formulations, that respect
the continuity conditions for magnetic fields, and b-conform
ones, that guarantee the continuity of magnetic flux. These
two classes involve the HTS nonlinear laws in inverse ways,
through either the electrical resistivity or the electrical con-
ductivity, and thus may exhibit different numerical behaviors.
Earlier investigations of h-conform formulations for solving
superconductor systems can be found in [4], [5] for the h-
formulation, and in [6], [7], [8], [9] for t-ω formulations.
Similar works on b-conform formulations can be found in [6],
[8], [10], [11], [12], [13] for a-v formulations. To date, a few
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comparisons of the different formulations have been conducted
in the literature, see for instance [6] for a comparison of
a-v and t-ω formulations in 2D with a Newton-Raphson
time stepping scheme, [14] for a comparison of the h-, t-
ω- and a-v-j-formulations in 2D, [3] for an overview and
[15] for a summary of methods for computing AC losses.
In parallel, several benchmark problems have been developed
over the years to serve as reference problems [16]. However,
as pointed out in [3], there are still few comparisons based on
simulations which are carried out within the same environment
and are validated against benchmarks, so that it is difficult to
draw general conclusions on the performance of the different
approaches.

The purpose of this work is to implement and study two FE
formulations, a magnetic-field conforming formulation (here
an h-φ-formulation) and a magnetic-flux-density conforming
formulation (here an a-formulation), and compare their perfor-
mance using the same numerical environment. No a priori is
made on their behavior and several time-stepping schemes,
as well as different iterative techniques, are systematically
investigated.

The manuscript is organized as follows: the different FE
models and formulations are presented in Sec. II. In Sec.
III, we start from simple considerations on the treatment of
the nonlinear constitutive law by iterative techniques (Picard
and Newton-Raphson). We then discuss the advantages and
drawbacks of each formulation based on their accuracy and
efficiency in 1D, 2D, and 3D problems, together with a val-
idation against known solutions and benchmarks. In Sec. IV,
we adopt a similar approach for soft ferromagnetic materials
with a magnetic saturation law. As it turns out that the
a-formulation is the best performing one for ferromagnets,
whereas the h-φ-formulation is preferred for superconductors,
we suggest a coupled formulation for situations where both
types of materials are present. We show that such an approach
yields accurate results with a better efficiency than single
formulations. Our final conclusions are drawn in Sec. V.

Model files for the main test cases are available on the
website www.life-hts.uliege.be.

II. MODEL AND FE FORMULATIONS

A. Physical model

We consider the magnetic response of a system containing
type-II superconductors with strong pinning that are cooled
in a cryogenic fluid or placed in the cold chamber of a
measurement device.
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Maxwell’s equations are solved in the magnetodynamic ap-
proximation [17], where the displacement current is neglected,

div b = 0,

curl h = j,

curl e = −∂tb,
(1)

with b, h, j, e the magnetic flux density (T), the magnetic
field (A/m), the electric current density (A/m2), and the electric
field (V/m), respectively. The system is composed of non-
conducting materials (but possibly magnetic ones), for which
b = µ(h)h and j = 0, together with superconductors,
described by b = µ0h (assuming ‖h‖ � Hc1) and the e-
j power law [18],

j =
jc

ec

(
‖e‖
ec

)(1−n)/n

e, (2)

where ec (V/m) is a threshold electric field defining the critical
current density jc (A/m2). By convention, ec is often chosen
to be 10−4 V/m. The dimensionless exponent n = U0/kBT
describes the sharpness of the transition to flux flow, where
U0 is the pinning energy barrier and kBT the thermal energy
(kB = 1.38× 10−23 J/K is the Boltzmann constant).

B. Finite Element Formulations
The system is represented by a domain Ω that is decom-

posed into a conducting domain, Ωc, defined as an open set and
containing the superconducting materials, and its complemen-
tary domain, ΩC

c , a closed set containing the other, electrically
insulating, materials. Boundary conditions are applied on
the external boundary, ∂Ω, which is decomposed into two
complementary domains: Γe, where the normal component of
b or the tangential component of e is imposed, and Γh, where
the tangential component of h is imposed.

The non-conducting domain ΩC
c can be simply or multiply

connected. Multiply connected geometries typically occur in
the presence of an external source. They can be made simply
connected by introducing cuts [19], as illustrated in Fig. 1 for
the case of a tape with an imposed current.

ΩC
c

CutΩc

Γe

Fig. 1: Example of a problem domain (tape case of section III-B, scale
not respected) with a current imposed across Ωc. The problem is 2D
and contains a single conducting region. The cut makes ΩC

c simply
connected. The external boundary belongs to Γe as b ·n|Γe = 0 can
be assumed provided Γe is far enough from the conductor.

An injected current intensity I and an applied voltage V
are associated to each connected region of Ωc and are thus

defined as global quantities. Exactly one of these quantities
is fixed in each region (coupling with circuit equations is not
considered here). If the domain Ωc is made up of N connected
parts Ωc,i with i ∈ C = {1, 2, . . . , N}, the current intensity
is imposed in a subset CI of C and the voltage is imposed in
the complementary set CV .

A finite element mesh is generated to discretize the domain.
Nodes, edges and facets of the conducting domain boundary
belong to the closed set ΩC

c .
Magnetic field conform formulation (h-formulation): The

chosen h-conform formulation expresses the magnetodynamic
problem in terms of h discretized with Whitney elements [20]
as follows:

h =
∑
e∈Ωc

he ψe +
∑
n∈ΩC

c

φn grad ψn +
∑
i∈C

Ii ci, (3)

with ψe the edge function of edge e, ψn the node function
of node n, and ci a discontinuous shape function associated
with the cut related to conducting region i, defined on a
transition layer [21]. Coefficients he, φn and Ii are the degrees
of freedom of the problem. The decomposition in (3) confers
two properties to h. First, using gradients in ΩC

c ensures that
h is curl-free in the non-conducting domain. No spurious
current density is introduced, and there is no need to consider
a large electrical resistivity in these regions. Second, the shape
functions ci directly implement the current constraints in the
function space, rather than through an additional integration
constraint.

Essential conditions, h×n|Γh
and Ii for i ∈ CI , are strongly

imposed by fixing the corresponding degrees of freedom: he
for e ∈ Γh, φn for n ∈ Γh, and Ii for i ∈ CI . The resulting
space for h, after imposing essential conditions, is denoted by
S̄1
h.
Test functions h′ are chosen in the same space (Galerkin

scheme), with coefficients h′e, φ
′
n and I ′i , but however with

vanishing coefficients where essential conditions are imposed.
The space of test functions is denoted as S̄1

h0.
The resulting weak formulation reads [21], [22]:

From an initial solution at time t = 0, find h ∈ S̄1
h

such that, for t > 0,(
∂t(µ(h) h) ,h′

)
Ω

+
(
ρ(curl h) curl h , curl h′

)
Ωc

−
〈
e× n ,h′

〉
Γe

+
∑
i∈C

ViIi(h′) = 0, ∀h′ ∈ S̄1
h0,

(4)

where the following notations are used for volume and surface
integrals:(

Ā , B̄
)

Ω
=

∫
Ω

Ā · B̄ dΩ,
〈
Ā , B̄

〉
Γ

=

∫
Γ

Ā · B̄ dΓ, (5)

with Ā and B̄ two scalar or vector fields and · the scalar multi-
plication or the dot product, respectively, and with Ii(h) = Ii.
For example, when h′ = ci is chosen (i ∈ CV , I ′i = 1), one
obtains the circuit equation(

∂t(µ h) , ci
)

Ω
+
(
ρ curl h , curl ci

)
Ωc

= −Vi. (6)

The formulation (4) is referred to as the h-φ-formulation or,
equivalently, the h-formulation. It is a weak form of Faraday’s
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equation. The continuity of the tangential component of h
is enforced by the considered shape functions. The natural
constraints, involving the tangential component of the electric
field, e × n|Γe

and the potentials Vi for i ∈ CV , are weakly
imposed.

In practice, the h-formulation can be solved in one of
two ways. Either the total magnetic field h is considered
as the unknown, leading to the total h-formulation, or h is
decomposed into a known source field hs and an unknown
reaction field hr, h = hs + hr, leading to the reaction h-
formulation.

Note that other h-conform formulations exist, such as the
t-ω-formulation. Because the nonlinear constitutive law is
involved in the same manner (resistivity), the main numerical
behavior is expected to be similar.

Magnetic flux density conform formulation (a-formulation):
Gauss’s law, div b = 0, implies that the magnetic flux
density can be expressed in terms of a vector potential a
such that b = curl a. Faraday’s law can then be rewritten
as curl (e + ∂ta) = 0 so that e = −∂ta− grad v, with v
an electric scalar potential. A gauge condition is necessary to
guarantee the uniqueness of the vector potential.

We first consider 3D geometries and 2D geometries with an
in-plane current density (for instance, a long bar in a parallel
magnetic field). The potentials a and v are discretized with
Whitney elements as follows:

a =
∑
e∈Ω

ae ψe and v =
∑
i∈C

Vivi, (7)

with ψe the edge function of edge e and vi a discontinuous
shape function associated with a cross-section of conducting
region i, known as the generalized source potential [23].
Coefficients ae and Vi are the degrees of freedom. The shape
functions vi allow one to introduce voltage constraints directly
in the basis function, rather than through an integral constraint.
Here, the function vi has a support limited to a transition layer,
so that v is not the usual electrostatic potential, see [23].

Essential conditions, e × n|Γe and Vi for i ∈ CV , are
strongly imposed by fixing the corresponding degrees of
freedom, ae for e ∈ Γe and Vi for i ∈ CV . The resulting space
for a, after imposing essential conditions, is denoted by S1

e .
The space for v, after imposing essential conditions, is denoted
by S0

e . The potential a is unique in Ωc, it is a primitive for e,
e = −∂ta, but it is not unique in ΩC

c , where e is not evaluated.
A gauge must then be introduced in ΩC

c and the resulting space
is renamed as S̃1

e . One convenient gauge, named the co-tree
gauge, consists in (strongly) imposing vanishing coefficients
on edges that belong to an appropriate tree [24]. Another
possibility is to (weakly) impose a Coulomb gauge [24].

Test functions a′ and v′ are chosen in the spaces defined in
(7), with coefficients a′e and V ′i , respectively, but however with
vanishing coefficients where essential conditions are imposed.
The spaces of test functions are denoted as S̃1

e0 and S0
e0,

respectively.
Given the nonlinear conductivity σ = σ(−∂ta − grad v)

and reluctivity ν = ν(curl a), the weak formulation reads as

follows [23], [25]:

From an initial solution at time t = 0, find a ∈ S̃1
e

and v ∈ S0
e such that, for t > 0,

(ν curl a , curl a′)Ω − 〈h× n ,a′〉Γh

+ (σ∂ta ,a
′)Ωc

+ (σgrad v ,a′)Ωc
= 0,

∀a′ ∈ S̃1
e0, and

(σ∂ta , grad v′)Ωc
+ (σgrad v , grad v′)Ωc

−
∑
i∈C

IiVi(v′) = 0, ∀v′ ∈ S0
e0,

(8)

with Vi(v) = Vi. For example, when v′ = vi is chosen
(i ∈ CI , V ′i = 1), one obtains the circuit equation

(σ∂ta , grad vi)Ωc
+ (σgrad v , grad vi)Ωc

= Ii. (9)

The formulation (8) is referred to as the generalized mod-
ified vector potential formulation, or a-formulation. It is a
weak form of Ampere’s equation. The continuity of the normal
component of b is enforced by the considered shape functions
while the natural constraints, h× n|Γh

and Ii for i ∈ CI are
weakly imposed.

Note that it is also possible to define v everywhere in the
conducting region (instead of defining it only in a transition
layer) and extend the gauge condition for a to Ωc as well. In all
tested situations, solutions obtained with this a-v-formulation
are identical to those obtained with the a-formulation.

In practice, the a-formulation can be solved in one of
two ways. Either the total vector potential a is considered
as the unknown, leading to the total a-formulation, or a is
decomposed into a known source potential as and an unknown
reaction potential ar, a = as + ar, leading to the reaction a-
formulation.

We now turn to 2D geometries with the current density
along the invariant direction. Now, grad v is perpendicular to
the plane and constant in each conducting domain [26]. The
vector potential is chosen in the same direction so that the
Coulomb gauge is implicit (div a = 0). Fields a and grad v
are discretized with Whitney elements as follows:

a =
∑
n∈Ω

an ψn and grad v =
∑
i∈C

Uizi, (10)

with ψn a perpendicular edge function associated to node n
and zi a piecewise-constant shape function, nonzero in Ωc,i
only. Coefficients an and Ui (voltage per unit length) are the
degrees of freedom. The resulting formulation is analogous
to formulation (8), but with the different function spaces and
unknowns described in (10).

C. Time Integration

The spatial discretization yields a semi-discrete nonlinear
system of equations. To obtain a fully discrete system that
can be solved numerically, time must also be discretized. In
this work, an implicit Euler method has been chosen. From
the initial solution at time t = t0, the solution is successively
sought at discrete time instants t1, t2, . . . , tf, not necessarily
equidistant. In the equation for time tn, n ∈ N0, all terms are
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evaluated at tn, with the time derivative of any quantity u at
time tn being approximated by the finite difference

du

dt

∣∣∣∣
tn

≈ u(tn)− u(tn−1)

tn − tn−1
. (11)

D. Iterative Techniques

After complete discretization, the original problem takes the
form of a system of nonlinear algebraic equations,

A(x)x = b, (12)

where x is the vector of degrees of freedom at the considered
time step. This nonlinear system cannot be solved directly and
iterative techniques are necessary.

In this work, we consider Picard and Newton-Raphson
iterative techniques.

a) The Picard technique: The Picard technique [27]
belongs to fixed point methods. From an iterate xi, the next
iterate xi+1 is sought by solving the linear system,

A(xi)xi+1 = b, i = 0, 1, . . . . (13)

In general, this method does not exhibit a high convergence
rate. However, even if in some cases the iterates may enter
cycles and fail to converge, this is usually a robust method in
the sense that it converges for a wide range of initial guesses
x0. An illustration of one iteration of this method in the case
of a single unknown is given in Fig. 2a.

b) The Newton-Raphson technique: The Newton-
Raphson technique [27] consists in approximating the
nonlinear term A(x)x to first order with a limited Taylor
development, yielding a linear system. From an iterate xi,
the next iterate xi+1 is computed by solving the following
linear system,

A(xi)xi + J(xi)(xi+1 − xi) = b, i = 0, 1, . . . , (14)

with J the Jacobian matrix defined by

J(x) =
∂

∂x
(A(x)x) . (15)

The Jacobian matrix can be evaluated numerically using finite
differences but if the analytical expression of the matrix is
known, it can be used. This is the case in this work. The
involved analytical expressions are given in the appendix.

This method is usually less robust than the Picard technique
in the sense that if the initial iterate is not sufficiently close
to the solution, the method may diverge. However, when the
initial guess is sufficiently close to the solution the conver-
gence can be very fast, with a quadratic rate of convergence.
An example of one iteration of this method in the case of a
single unknown is given in Fig. 2b.

c) Choosing the initial guess: Iterations must start with
an initial guess, or a predictor. The simplest possibility is to
consider the solution at the previous time step. This method is
referred to as the zeroth-order extrapolation method. Several
previous solutions can also be extrapolated and a class of
polynomial extrapolation methods can be defined. In this work,
we consider extrapolations up to order two (that involves the
solution at the last three time steps).

x

A(x)x

b

x

A(x)x

b

xi xi+1 xi xi+1

(a) Picard technique (b) Newton-Raphson technique

Fig. 2: One iteration of the Picard and Newton-Raphson iterative
techniques in the case of a single degree of freedom.

III. COMPARISON OF THE METHODS

The comparison of the different methods is conducted
progressively. First, the application of the iterative techniques
on the nonlinear laws is analyzed in a case with a single-
degree-of-freedom. As shown below, the conclusions drawn
in the simple case extend to 1D, 2D and 3D problems. Then,
the accuracy of the different methods is evaluated and their
efficiency is compared in two benchmarked 2D problems.
Finally, the methods are illustrated on a benchmarked 3D
problem.

In this section, no magnetic material is considered and
b = µ0h everywhere in the domain. Simulations are
performed by the GetDP free software [28], [29] and meshes
are generated by Gmsh [30]. Model files for the main test
cases are available on the website www.life-hts.uliege.be.

A. Behavior of the Iterative Techniques

An important difference between the h- and a-formulations
is that they involve the nonlinear electric constitutive law in a
different manner, either through the electrical resistivity or the
electrical conductivity. The shape of this constitutive law has a
strong influence on the behavior of the iterative techniques, as
we now illustrate for simple equations with a single unknown.

Consider a superconducting ring subjected to a time-varying
external magnetic flux Φ̇. The ring can be modelled by
lumped elements: a nonlinear resistor R = Vc/Ic(|I|/Ic)

n−1,
that mimics the electrical resistivity law, in series with a
linear inductor L, yielding R(I)I + Lİ = Φ̇. Solving the
problem for the current intensity I flowing in the ring gives
rise to an equation of the form (after time discretization)
f(x) = |x|n−1x + x = b, to be solved at each
time step. By contrast, solving for the voltage across the
modeling resistor gives rise to an equation of the form
f(x) = |x|(1−n)/nx + x = b. The shape of f in both
cases is depicted in Fig. 3. The first case is analogous to the
h-formulation because it involves a resistivity-like parameter
whereas the second one is analogous to the a-formulation with
a conductivity-like component.

Applying the iterative techniques on the two nonlin-
ear shapes yields the following results. The first equation,
f(x) = |x|n−1x + x = b (h-formulation), is more
efficiently solved with the Newton-Raphson technique, as the
Picard iterations easily cycle and fail to converge. An example
of cycle is shown in Fig. 4a. Conversely, the second equation,
f(x) = |x|(1−n)/nx + x = b (a-formulation), can hardly be

www.life-hts.uliege.be
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x

f(x)

(a) f(x) = xn + x (h-form.).

x

f(x)

(b) f(x) = x1/n + x (a-form.).

Fig. 3: Typical shape of the nonlinear functions encountered with the
h-formulation (a) and with the a-formulation (b).

solved with the Newton-Raphson technique whereas the Picard
technique shows a good stability. With the Newton-Raphson
technique, iterations also enter cycles as illustrated in Fig. 4b.
Note that for each case in Fig. 4, the cycling behavior can
be circumvented by using relaxation factors, which however
requires several trials to determine the most efficient values to
be used.

x

f(x)

b

(a) Picard and h-formulation.

x

f(x)

b

(b) N-R and a-formulation.

Fig. 4: Illustration of iteration cycles encountered when solving the
superconducting ring problem. Gray dots represent the successive
iterates and dash-dotted lines connect two successive iterations. N-R
stands for Newton-Raphson.

As shown below, the observed behaviors can be generalized
to 1D, 2D and 3D problems: the Picard technique does not
work directly with the h-formulation whereas the Newton-
Raphson technique fails to converge when used to linearize the
a-formulation. The origin of the corresponding convergence
issues was observed to be identical to that in the above
simple problems, as in some regions of the mesh, the degrees
of freedom enter cycles. Again, it is sometimes possible to
overcome these cycles by using finely tuned relaxation factors,
a method which however requires trial-and-error.

B. Comparison of 2D Models

The numerical study is conducted on two different prob-
lems. The first problem consists in a superconducting bulk
cylinder subjected to an external applied field. The geometry
is axisymmetric and only one slice of one radian is modelled.

This test case will be referred to as the bulk case and is
comparable to benchmark 4 of the HTS modeling website [16].

The second problem consists in a superconducting thin tape
transporting an imposed AC current intensity. The geometry
is assumed two-dimensional and only the cross-section of the
tape of modelled. This test case will be referred to as the tape
case and is comparable to benchmark 1 of the HTS modeling
website [16].

Following the conclusions of the previous section, the h-
formulation is solved with the Newton-Raphson technique
whereas the a-formulation is solved with the Picard technique.

a) Convergence criterion: The chosen convergence cri-
terion for the iterative techniques is based on an estimate
P of the instantaneous electromagnetic power. For the h-
formulations, P is expressed as

P =
(
∂t(µ h) ,h

)
Ω

+
(
ρ j , j

)
Ωc
, (16)

with j = curl h. For the a-formulations, P is given as

P =
(
ν ∂tb , b

)
Ω

+
(
σe , e

)
Ωc
, (17)

with b = curl a and e = −∂ta− grad v.
The criterion requires the relative change1 of P between two

iterations to be smaller than a given tolerance ε. This choice
of convergence criterion is motivated by the observation that
similar residuals do not correspond to similar accuracies in
each formulations whereas quantity P is comparable between
the formulations.

In the following, we first evaluate the accuracy of the
numerical solutions. Then, we compare the efficiency of the
methods that lead to accurate results.

1) Accuracy of the formulations:
Bulk case: The bulk superconductor has a radius

R = 12.5 mm and a height H = 10 mm. The critical current
density is jc = 3×108 A/m2. Cylindrical coordinates (r, θ, z)
are introduced. The cylinder is subjected to an external field
applied parallel to its axis (the z-axis), so that the problem
is axisymmetric. The time evolution of the applied field is
illustrated in Fig. 5 with bmax = 1 T and t1, t2, and t3 equal
to 5, 10, and 15 s, respectively.

0 t1 t2 t3
0

bmax

Time

Fig. 5: Time evolution of the external applied field in the bulk test
case.

Fig. 6 shows the azimuthal current density obtained with
both formulations at the three instants t1, t2, and t3, whereas
Fig. 7 shows the corresponding vertical components of the
magnetic flux density 2 mm above the cylinder. With mesh
and time refinement, the solutions of the h- and a-formulations

1The relative change is defined as |(Pi−Pi−1)/Pi−1|, with Pi the value
of the convergence indicator at iteration i. If the value of Pi−1 is smaller
than 10−7, the relative change is replaced by the absolute increment divided
by 10−7 W/m. This scheme is followed to avoid convergence issues when
Pi−1 is too small and is only motivated by the tested situations.
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are seen to approach each other (both globally and locally).
The global convergence is illustrated in Fig. 8.

jθ (A/m2)

−3.36× 108 3.31× 1080

t1 t2 t3

a

h

Fig. 6: Current density distribution in a slice of the bulk cylindrical
geometry at the instants t1, t2 and t3 for a maximum applied field
of 1 T and n = 20. White areas are free of current, light gray areas
are crossed by out-of-plane current densities and dark gray areas are
crossed by opposite current densities. Top: a-formulation. Bottom:
h-formulation.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

r (mm)

b z
(T

)

t1 (h) t1 (a)
t2 (h) t2 (a)
t3 (h) t3 (a)

Fig. 7: Distribution of the z-component of the magnetic flux density
2 mm above the cylinder at the instants t1, t2 and t3 for a maximum
applied field of 1 T and n = 20. Solid lines: h-formulation. Dashed
lines: a-formulation.
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Fig. 8: Change of AC losses
∮

cycle (j , e)Ωc
dt, relative to an accurate

solution, for various numbers of spatial degrees of freedom, for the
two formulations, with constant time step (∆t = t1/50 s), and n =
25. The reference value is determined as the arithmetic mean of the
solutions obtained with the finest mesh, in the h- and a-formulations
(4.9495 J/m·cycle).

Note that the quality of the solution is not always good for
coarser meshes and/or large time steps. For instance, the fields

h obtained with the h-formulation and a obtained with the
a-formulation both exhibit small amplitude oscillations over a
few elements, located ahead of the sharp flux penetration front.
This results in oscillations in the other fields also. Because
the current density is expressed through the power law in the
a-formulation, the oscillations are strongly amplified. In the
h-formulation, the current density is obtained through the curl
of h and the oscillations are thus not as much amplified, as
shown in Fig. 9. In both formulations, the error is localized in
a few elements and thus becomes negligible when the mesh
is refined (see the lower part of Fig. 9, and also Fig. 6).
As discussed below, the choice of the time step also has an
important influence on the solution accuracy.
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h-formulation (coarse)

0 2 4 6 8 10 12
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1
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/
j c

a-formulation (fine)
h-formulation (fine)

Fig. 9: Current density profiles, as a function of the distance r to
the symmetry axis, at the mid-height of the cylinder, at time t3 for
a maximum applied field of 1 T and n = 20. Upper figure: coarse
mesh of 1661 nodes. Lower figure: finer mesh with 36989 nodes.

Tape case: The tape has a large aspect ratio: its height
is H = 1 µm and its width is W = 12 mm. The critical
current density is jc = 2.5×1010 A/m2. Cartesian coordinates
are introduced with the x-axis along the width of the tape
and the y-axis along its height. A sine-wave current intensity
I(t) = Imax sin(2πft) is imposed, with a frequency f = 50 Hz
and an amplitude Imax = FIc, where Ic = HWjc is the
critical current intensity and F ∈ [0, 1] a constant. The
superconducting domain is meshed with one layer of first-
order quadrangular elements.

Fig. 10 shows the current density and magnetic flux density
distributions after one fourth of a period obtained with both
formulations. Again, with mesh and time refinement, the
solutions of the h- and a-formulations converge to each other
and the solutions are reliable, see Fig. 11. Note that the current
density profile is still very sensitive to the a field with the a-
formulation, especially with large n values. The convergence
criterion must be strong enough if accurate current density
profiles are sought with the a-formulation.

Reaction and total formulations: The solutions above
were obtained with the total h- and a-formulations. Numerical
solutions of the reaction formulations are exactly identical to
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Fig. 10: Current density and magnetic flux density distributions in
the tape at time instant 1/(4f) for different power exponents n and
imposed current intensities Imax = FIc. Left: h-formulation. Right:
a-formulation.
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dt, relative to an

accurate solution, for various numbers of spatial degrees of freedom,
for the two formulations, with constant time step (∆t = 1/(50f) s),
and n = 100. The accurate solution is the arithmetic mean of the
values obtained with the finest mesh, in the h- and a-formulations.

those of the total formulations. Of course, this is only the
case provided that the source field hs or potential as are
representable in the corresponding shape function space.

Influence of the time step: The choice of the time step
is important for both the solution accuracy and the conver-
gence properties. The motivation for studying this influence is
based on the observation that, in some situations, the iterative
techniques converge even with very large time steps, while
providing reliable magnetic flux density distributions. With the
a-formulation and the Picard linearization technique, it has
even been observed that the larger the time step, the easier
the convergence. A single-time-step method has already been
discussed by Lousberg in [11], [18]. To some extent, such
an approach is also possible with the h-formulation and the
Newton-Raphson technique. It is thus tempting to use very
large time steps to accelerate the simulations. This possibility
should however be exploited with care as not all quantities are

reliable when large time steps are used.
To check the validity of the results, a simple one-

dimensional case is considered. It consists in a 25-mm-wide
slab subjected to a parallel field increasing linearly over time
at 5 T/s. Note that in the limit of fine meshes and small time
steps, both h- and a-formulations accurately reproduce the
analytical results of [31]. Magnetic flux and current penetra-
tion profiles are compared for two time discretization levels:
with a single-time-step, and with 100 time steps. Materials
with n = 10 and n = 100 are chosen. Fig. 12 compares
the corresponding numerical solutions for the h-formulation.
Results from the a-formulation are similar. As can be seen
in the figure, even if the method has converged in the four
cases, there is a large error on the magnetic flux density
distribution and the current density profile for the low power
exponent n = 10. Clearly, the single-time-step approach is not
reliable in that case. However, with a larger exponent, both
time discretization levels provide accurate results.
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n = 100 - ∆t small

Fig. 12: Comparison between the numerical solutions for two time
discretization levels for n = 10 and n = 100. Dashed curves
correspond to the solution obtained with a single time step whereas
solid curve are obtained after 100 time steps. Solid curves coincide
with the approximated analytical solution from [31] (not represented
in the figure). Solutions of the h-formulation, in a 1D geometry.
Applied field rate: 5 (T/s).

These observations can be explained as follows. In the
Bean model [32] limit (n → ∞) and with a linear ramp of
applied field, the magnetic flux density distribution is linear
in space and the flux front propagates at constant speed. In
the finite element model, time derivatives are estimated by a
finite difference approximation (backward Euler method). This
approximation amounts to replacing the instantaneous increase
of the magnetic flux density by its average increase over the
considered time step. This is illustrated in Fig. 13 in the ex-
treme case of a single time step for the whole time interval, for
a magnetization from a virgin state. In this situation, the time
derivative is underestimated almost everywhere in the material.
If more time steps are considered, the underestimation error
is localized near the front and its influence is thus reduced. A
power law model with a finite exponent n yields a different
distribution but the finite difference still underestimates the
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time derivative. The error on the time derivative is present
both for small values of n and in the Bean limit. However,
the effect of this error on the current and flux distributions
is found to be larger for smaller n, as previously observed in
[11].

t4

t3

t2

t1

t0

x3 x2 x1 x0

hs

x3 x2 x1 x0

ttt

h h h h

t4

t3

t2

t1

t0

t

Fig. 13: Illustration of the error induced by the finite difference
approximation of the time derivative in the case of large time steps.
Up: inside the superconductor, magnetic flux density distribution at
several time instants for a linearly increasing source field in the Bean
model limit. Down: time evolution of the magnetic flux density at
several spatial points (bold gray curves) and illustration of the finite
difference approximation (dash-dotted lines) in the case of a single
numerical time step. Time instants t0, . . . , t4 are equidistant.

The error on time derivatives induces an error on e (via
Faraday’s law curl e = −∂tb in the h-formulation and
via e = −∂ta − grad v in the a-formulation). With large
n, the resulting error on j is small because of the strong
nonlinearity of the constitutive law. For decreasing n, the
sensitivity of j to e increases for ‖j‖ close to jc and the
error on j thus increases. Because e is underestimated, j is
also underestimated and, to reach h = hs at the material-
air interface, this implies a larger penetration distance, as
observed in the simulations. Therefore, even though the use
of very large time steps provides accurate current and field
distributions when n is large enough, time derivatives are
always underestimated and this leads to non-negligible errors
on the electric field. Power quantities and losses rely on
time derivatives and are thus also underestimated. The use
of large time steps is thus not appropriate for computing the
instantaneous power dissipation or losses.

Conclusions on the accuracy: All formulations lead to
accurate and reliable results provided that the time step,
the mesh size, and the convergence criterion are sufficiently
small. For coarser meshes, the a-formulation provides large
oscillations of the current density in non-penetrated regions.
There is a possibility to use large time steps to speed up the
simulations, more specifically in the a-formulation, but the
accuracy on time derivatives is reduced. This can nevertheless
be exploited to obtain fast and reliable magnetic flux density

and current distributions for large n.
2) Efficiency of the formulations: The convergence speed

of all methods is not identical. Depending on the method and
on the choice of the first iterate, or predictor, the iterative
techniques may require very different numbers of iterations to
converge. Because the simulation time is proportional to the
total number of iterations, this affects the calculation speed.
The accurate methods which were identified in the previous
section (small time step, fine mesh, and strong convergence
criterion) are now compared in terms of their efficiency.

To proceed, the bulk and the tape cases are considered with
three discretization levels: coarse, medium, and fine, defined
by a multiplier α equal to 4, 2, and 1, respectively. The power
law exponent is n = 25 in both geometries and F = 0.9 for
the tape. In the bulk case, the mesh size varies from 0.3α mm
in the cylinder to 3α mm at the outer surface. The number of
time steps from 0 to t3 is 300/α. In the tape case, the number
of quadrangular elements along the width of the tape is 400/α
and the number of time steps for one period is 100/α.

In some situations, the iterative techniques diverge or do
not converge in a reasonable number of iterations. To treat
automatically these issues, an adaptive time step procedure
is implemented. This is crucial for efficient resolutions with
the Newton-Raphson technique: small time steps are typically
necessary during the first penetration of magnetic flux but
one can afford larger steps once the sample is saturated.
The heuristic procedure is defined as follows (procedure from
[33]): (1) if the number of iterations exceeds imax with a
time step ∆t or if the iteration diverges, the current time
integration step restarts with a smaller time step equal to γ∆t,
with γ < 1, (2) if a step with time step ∆t converges in
less than ifast iterations, the next time step is chosen equal
to min(β∆t,∆tmax), with β > 1 and a fixed ∆tmax. Here,
we choose γ = 1/2, β = 2, ∆tmax equal to the initial time
step, ifast = imax/4. For the h- and a-formulations, we choose
imax = 60 and imax = 500, respectively.

Table I shows the number of solved linear systems required
in the bulk and tape cases, with the two formulations and
different extrapolation orders for the first iterate. Clearly, for
an identical time discretization, the slower convergence rate of
the Picard technique used in the a-formulation is detrimental
and the h-formulation is more efficient. This can be observed
in Fig. 14, where the system residual does not decrease
monotonously with the Picard technique whereas a quadratic
convergence rate is obtained at the last iterations with the
Newton-Raphson technique.

Results show that choosing the first iterate (the predictor)
with an extrapolation from the previous time steps is efficient
for reducing the total number of iterations. A good choice
is the first-order extrapolation of the last two steps with the
h-formulation and the second-order extrapolation of the last
three steps for the a-formulation.

If a good accuracy is sought for all quantities, small time
steps should be used and, in that case, the h-formulation
reaches a solution faster. Typically, with identical discretiza-
tion levels, the h-formulation is two to ten times faster than the
a-formulation. On the contrary, in controlled situations where
the use of large time steps is acceptable, e.g., with large n
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Formulation Total h Total a
Linearization Newton-Raphson Picard
Extrapolation 0th 1st 2nd 0th 1st 2nd

Bulk
Coarse 570 612 824 16382 10905 9182
Medium 1287 1344 1808 34858 20935 16654
Fine 2671 2751 3780 74929 41467 27006

Tape
Coarse 4124 836 455 2551 2338 1827
Medium 8558 983 732 5665 5001 4222
Fine 17266 867 1058 13628 12039 8172

TABLE I: Total number of solved linear systems for the simulation
from 0 to t3 in the bulk case and for 5/4f in the tape case, for
three discretization levels, three extrapolation techniques with the h-
formulation and the a-formulation. Relative tolerance for the conver-
gence criterion: 10−6 (except for the tape with the a-formulation,
10−4). Simulation times for the fastest simulations of each line are,
on a single Intel Xeon 2 GHz CPU with 4Gb RAM, from top to
bottom, 12s, 1m55s, 1h38m, 20s, 2m50s, and 14m.

0 10 20 30
10−21

10−7

107

Iteration number i

(a) Newton-Raphson technique.

0 20 40 60 80

102

104

Iteration number i

(b) Picard technique.

Fig. 14: Evolution of the 2-norm of the residual ri = b−A(xi)xi
with the iterations, for three examples of time integration step and
for the two linearization techniques, for the bulk case. (a) Newton-
Raphson with the h-formulation and the zeroth-order extrapolation.
(b) Picard with the a-formulation and the first-order extrapolation.

values and for determining the current and flux distributions,
the a-formulation is much more stable and might be used to
get fast results, as will be illustrated in the next section. In that
case of large time steps, the h-formulation with the Newton-
Raphson technique is less appropriate because the iterations
diverge if the initial estimate is not sufficiently close to the
solution.

C. Cube 3D Model

The conclusions shown above are now illustrated on a 3D
problem: a superconducting cube subjected to an external
applied field parallel to its side faces. The problem is similar
to benchmark 5 of the HTS modeling website [34]. The cube
side is a = 10 mm, materials properties are jc = 108 A/m2

and n = 100. The applied field is homogeneous and varies
sinusoidally with time with a peak value of 200 mT and a
frequency f = 50 Hz. One eighth of the cube is modelled. The
superconducting domain is meshed with cubes (16× 16× 16
cubes) and the surrounding domain is meshed with tetrahedra
and pyramids.

The magnetization curve is computed by two methods:
the a-formulation with large time steps (20 steps only for
the curve, calculation time 3h30m, same CPU as in Table

I) for a fast resolution, and the h-formulation with smaller
time steps (300 steps for the curve, calculation time 10h)
for an accurate evaluation of all quantities. The magnetization
curves are given in Fig. 15, they both match the benchmark
results. Even for large time steps, the a-formulation yields
accurate magnetization values, due to the large n-value. On
the contrary, to compute accurately time integrated quantities,
it is necessary to use smaller time steps. In that case, the
h-formulation is recommended. For illustration, a perspective
view of the solution of both formulations is given in Fig. 16.
Again, note the slight oscillations of the current density after
the flux front from the a-formulation. If needed, these oscilla-
tions can be decreased by refining the mesh and strengthening
the convergence criterion.
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Fig. 15: Magnetization curve for the superconducting cube, obtained
with two formulations. Gray dots represent the solutions at successive
(large) time steps.
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Fig. 16: Current density distribution on the boundaries of one eighth
of the superconducting cube after the first ramp of µ0hs = 0.2 T. Left:
h-formulation. Right: a-formulation. Scale is for the arrow color.

IV. EXTENSION TO SYSTEMS CONTAINING SOFT
FERROMAGNETS

The models developed above are directly adapted for treat-
ing systems containing linear isotropic non-conducting fer-
romagnetic domains. To model saturation, a nonlinear law
must be introduced and an appropriate linearization technique
must be chosen. It appears that the approach followed for the
superconductor can be transposed for the ferromagnet.

A simple model for an isotropic saturation law expresses
the permeability µ = µ(h) as a rational expression of first
order-polynomials, leading to the following relationship:

b = µ0

(
1 +

(
1

µr0 − 1
+
‖h‖
m0

)−1
)
h, (18)
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with µr0 the relative permeability at origin and m0 (A/m) the
saturation magnetic field. A graphical representation of this
law is given in Fig. 17. The permeability law is involved in
the h-formulation. The model can be explicitly inverted (see
the appendix) to yield the reluctivity law required for the a-
formulation.

h

b
µ0m0

µ0µr0

Fig. 17: Ferromagnetic constitutive law and representation of the
physical parameters.

The behavior of the iterative techniques on this nonlinear
law is found to be analogous to what was observed for the
power law. On the one hand, the law b = µh has the same
concavity than the law j = σe and the application of the
Newton-Raphson technique leads to iteration cycles, although
the situation is less severe here because the permeability is
finite at the origin. On the other hand, the law h = νb is
comparable to the law e = ρj and, in that case, the Picard
technique is less appropriate.

Following the same reasoning as with the superconductor,
it is therefore recommended to linearize the h-formulation
with a Picard technique and the a-formulation with a Newton-
Raphson technique when modeling soft ferromagnets only.
The a-formulation is thus expected to be more efficient than
the h-formulation because it will benefit from the high rate of
convergence of the Newton-Raphson technique. This is what
is actually observed. Note that we also found that switching
from the Picard technique to the Newton-Raphson technique
for b = µh after a given number of iterations also helps
avoiding cycles. This however remains less efficient than using
the a-formulation.

Remarkably, conclusions for the superconductor and the
ferromagnet are antagonistic: the h-formulation is preferred
for the former material whereas the a-formulation is more
efficient for the latter. Using a single formulation for the whole
domain is thus expected to be sub-optimal. Consequently, we
investigated the benefits of using a coupled formulation in a
2D example.

A. Coupled Formulation

Let the problem domain Ω be decomposed into two parts:
Ω̄ containing the superconducting domain and its boundary
and Ω̂ containing the union of the ferromagnetic, the air
(or cryogenic fluid) domains, and their boundaries. Thus,
Ω̄ ∪ Ω̂ = Ω. Their non-empty intersection Ω̄ ∩ Ω̂ is a curve
and is denoted by Γm, as illustrated in Fig. 18 (note that Ω̄
must not necessarily be enclosed by Ω̂). Surfaces Γ̄e, Γ̄h, Γ̂e
and Γ̂h are defined in the associated domains. Note that the
air domain could be placed in Ω̄ instead.

Domain Ω̄ is solved with the h-formulation whereas domain
Ω̂ is solved with the a-formulation. The coupling surface

SC

FM

Air nΩ̄

nΩ̂

Ω

Ω̂

Ω̄

a-formulation

h-formulationΓm

Γm

Fig. 18: Schematics of the domain decomposition for the coupled
formulation. SC, FM and Air stand for the superconducting, ferro-
magnetic, and air (or cryogenic fluid) domains.

Γm is treated differently in the two sets; degrees of freedom
on this surface cannot be known a priori, and thus cannot
be strongly imposed. Instead, the coupling can be weakly
imposed within the surface integrals in the weak formulations,
as natural continuity constraints. Consequently, Γm ⊂ Γ̄e and
Γm ⊂ Γ̂h. It can be shown that this procedure weakly ensures
the continuity of the tangential component of h and of the
normal component of b.

For conciseness, let Γ̄e and Γ̂h be equal to Γm. The coupled
formulation is then expressed as follows:

From an initial solution at time t = 0, find h ∈ S̄1
h(Ω̄)

and a ∈ S̃1
e (Ω̂) such that, for t > 0,(

∂t(µ h) ,h′
)

Ω̄
+
(
ρ curl h , curl h′

)
Ω̄c

+
〈
∂ta× nΩ̄ ,h′

〉
Γm

+
∑
i∈C

ViIi(h′) = 0,

(ν curl a , curl a′)Ω̂−
〈
h× nΩ̂ ,a′

〉
Γm

= 0,

∀h′ ∈ S̄1
h0(Ω̄) and ∀a′ ∈ S̃1

e0(Ω̂).

(19)

Note that the coupling operates through the two surface
integral terms. Similar coupling schemes are discussed in
detail in [35] and [36], and have been introduced in another
context in [37].

B. Efficiency Comparison

The benefits of using the coupled formulation are illustrated
on an induced current case. The geometry consists in a
ferromagnetic cylinder (µ0m0 = 1.31 T, µr0 = 1700) of radius
R = 12.5 mm and height Hferro = 5 mm placed on the top of
a superconducting bulk cylinder (n = 20, jc = 3×108 A/m2)
of radius R and height Hsuper = 5 mm. The system is
subjected to an external applied field aligned with the cylinders
axis (increasing from 0 T to the maximum applied field
of 5 T with a rate of 25 mT/s, then decreasing to −5 T
with the opposite rate). The accuracy of the formulation is
successfully verified. The efficiency is summarized in Table II
for different methods and discretization levels. The mesh size
varies from 0.3α mm in the cylinders to 5α mm at the outer
surface, with α equal to 4, 2, and 1 in the coarse, medium
and fine levels, respectively. For the coupled formulation for
example, this gives rise to 840, 2800, and 10800 degrees of
freedom, respectively. The minimum number of time steps is
fixed to 400/α. The hybrid linearization technique consists in
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switching from Picard iterations to Newton-Raphson iterations
after a given number of iterations (here 20).

Materials SC and FM
Form. Total h Total a Coupled
Lin. SC NR NR Pi NR NR NR
Lin. FM Hybrid NR NR NR NR NR
Extr. 1st 1st 2nd 0th 1st 2nd

Coarse 1878 3268 4381 1360 1071 2078
Medium 3366 4083 7539 2430 1931 3609
Fine 7350 4422 14594 5235 3753 8853

TABLE II: Total number of solved linear systems for the loading-
unloading cycle for different methods and three discretization levels.
Bold numbers are the minima of each line. Underlined numbers
correspond to simulations where cycles in the iterations were en-
countered. Italic numbers refer to simulations where the Newton-
Raphson technique diverged at least once (and where the time step
had to be temporarily reduced). SC stands for superconductor, FM for
ferromagnet. NR stands for Newton-Raphson, Pi for Picard. Relative
tolerance for the convergence criterion: 10−6. Simulation times on a
single Intel Xeon 2 GHz CPU with 4Gb RAM are 56s, 5m30s, and
48m40s for the bold numbers.

The first observation is that in all configurations, the coupled
formulation, with first-order extrapolation, is the most efficient
one.

The total a-formulation suffers from the low convergence
rate of the Picard technique. Nevertheless, as already men-
tioned, the Picard technique in the a-formulation can still be
useful when using very large time steps (not represented in the
table). In that case, it becomes more stable than the Newton-
Raphson technique of the h-formulation.

When the total h-formulation does not encounter iteration
cycles, its efficiency is found to be nearly equivalent to that
of the coupled formulation. However, there is no a priori
guarantee that a cycle will not be encountered (in the example
of Table II, cycles appear in all three cases). The time step
must be sufficiently small, but no quantitative criterion has
been found and if cycles arise, the number of iterations
strongly increases. In the presence of a cycle, the efficiency can
be improved in practice with a fine tuning of the time stepping
parameters. The resulting set of parameters would however
not necessarily apply to other geometries or materials. Also,
using a relaxation factor procedure, e.g. an accelerated search
technique [38], can help to avoid cycles. It however requires
several trials to find the right factor and because better results
can be obtained with other methods, this solution has not been
investigated further.

The hybrid technique for linearization of the ferromagnet
is interesting to prevent cycles but becomes detrimental in
situations where these cycles do not appear or with finer
discretizations. Again, this could be optimized by making
the switching procedure more specific. Because it would also
rely on a trial-and-error procedure and would not necessarily
generalize to other problems, this is not desirable.

The coupled formulation is simple and robust and does not
need parameter tuning.

V. CONCLUSION

In this work, we compared the accuracy and efficiency of
two finite element formulations for modeling high-temperature

superconductors in 1D, 2D, and 3D geometries. We concluded
that the choice of the formulation essentially depends on
the sought results. When accurate results are wanted, the
h-formulation might be preferred, together with a Newton-
Raphson linearization technique and an adaptive time step
procedure. Moreover, efficiency is highly enhanced when an
appropriate predictor is chosen, e.g., a linear extrapolation of
the last two solutions. When one can afford less accuracy on
quantities relying on time derivatives, very fast results can
be obtained with the a-formulation together with the Picard
linearization technique. This option is particularly interesting
in the case of large exponent values in the conductivity power
law to get a good approximation of the magnetic field and the
current density.

We applied the same approach to soft ferromagnetic mate-
rials. We arrived at opposite conclusions, the a-formulation is
the most efficient and we thus proposed a coupled formulation
to model systems containing both high-temperature supercon-
ductors and soft ferromagnets.

In further works, others aspects such as thermal coupling,
b-dependent jc, anisotropic properties or ferromagnetic hys-
teresis would be very interesting to investigate.

APPENDIX

The linearization of the system matrix by the Newton-
Raphson technique requires the expressions of the derivatives
of the nonlinear constitutive laws. As these laws are vector
relations, the derivatives are second-order tensor expressions.
In the following expressions, index notation is used.

The superconductor constitutive relation (2) diverges for
‖e‖ → 0. In this work, the constitutive law has been regu-
larized as follows,

j =
jc

ec

1

εσ + (‖e‖/ec)
(n−1)/n

e = σ(‖e‖)e, (20)

with εσ = 10−8. Its tensor derivative is given by

∂ji
∂ej

= σ(‖e‖) δij − n− 1

n

(
σ(‖e‖)

)2
jcec

(
ec

‖e‖

)(n+1)/n

eiej . (21)

Conversely, the inverse law (resistivity sense), given by

e =
ec

jc

(‖j‖
jc

)n−1

j = ρ(‖j‖)j, (22)

gives

∂ei
∂jj

= ρ(‖j‖)δij + (n− 1)
ρ(‖j‖)
‖j‖2

jijj . (23)

Using the law (18) for ferromagnetic materials yields,

∂bi
∂hj

= µ0

[
1 +

(
1

µr0 − 1
+
‖h‖
m0

)−1
]
δij

− µ0

m0

[
1

µr0 − 1
+
‖h‖
m0

]−2
hihj
‖h‖ . (24)

Conversely, the inverse law, given by

h =
1

2

(‖b‖
µ0
− µr0m0

µr0 − 1
+ s(‖b‖)

)
b

‖b‖ , (25)
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with

s(‖b‖) =

√(
µr0m0

µr0 − 1
− ‖b‖

µ0

)2

+
4m0

µr0 − 1

‖b‖
µ0

, (26)

gives

∂hi
∂bj

=
1

2

[
1

µ0
− µr0m0

(µr0 − 1)‖b‖
+

1

‖b‖
s(‖b‖)

]
δij

+
1

2

[
µr0m0

(µr0 − 1)‖b‖3 −
1

‖b‖3 s(‖b‖)

+ (s(‖b‖))−1

(
2− µr0

µr0 − 1
m0 +

‖b‖
µ0

)
1

µ0‖b‖2
]
bibj . (27)
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